• 제목/요약/키워드: Traffic Big Data

검색결과 241건 처리시간 0.025초

DTG Big Data Analysis for Fuel Consumption Estimation

  • Cho, Wonhee;Choi, Eunmi
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.285-304
    • /
    • 2017
  • Big data information and pattern analysis have applications in many industrial sectors. To reduce energy consumption effectively, the eco-driving method that reduces the fuel consumption of vehicles has recently come under scrutiny. Using big data on commercial vehicles obtained from digital tachographs (DTGs), it is possible not only to aid traffic safety but also improve eco-driving. In this study, we estimate fuel consumption efficiency by processing and analyzing DTG big data for commercial vehicles using parallel processing with the MapReduce mechanism. Compared to the conventional measurement of fuel consumption using the On-Board Diagnostics II (OBD-II) device, in this paper, we use actual DTG data and OBD-II fuel consumption data to identify meaningful relationships to calculate fuel efficiency rates. Based on the driving pattern extracted from DTG data, estimating fuel consumption is possible by analyzing driving patterns obtained only from DTG big data.

교량 모니터링 빅데이터를 이용한 광안대교의 교통량 의존 변위 추정 모델 (Traffic Volume Dependent Displacement Estimation Model for Gwangan Bridge Using Monitoring Big Data)

  • 박지현;신성우;김수용
    • 대한토목학회논문집
    • /
    • 제38권2호
    • /
    • pp.183-191
    • /
    • 2018
  • 본 연구에서는 차종별 교통량 데이터와 연직 변위 데이터의 상관관계를 바탕으로 광안대교의 차종별 교통량 데이터를 이용한 연직 변위 추정 모델을 개발하였다. 추정 모델의 개발 과정에서 구조화 회귀 분석에 기반한 모델링 방법과 주성분 분석법에 기반한 모델링 방법이 적용되었으며, 각각의 방법으로 개발된 모델의 변위 추정 성능을 비교 분석하였다. 개발된 모델을 이용하여 추정된 변위는 실측 변위와 유사한 것으로 분석되었으며, 이로부터 차종별 교통량 데이터를 광안대교의 교통량 의존 변위 추정에 적용 가능한 것을 알 수 있었다. 또한, 구조화 회귀 분석에 기반한 모델과 주성분 분석에 기반한 모델의 변위 추정 성능은 상호간에 큰 차이가 없다는 것을 알 수 있었다. 결론적으로 본 연구에서 개발한 차종별 교통량 데이터를 이용한 연직 변위 추정 모델은, 광안대교의 교통하중에 따른 거동 분석 등에 유효하게 활용될 수 있을 것으로 사료된다.

모바일 빅 데이터 트래픽 환경에서 새로운 이동통신 주파수의 활성화 방안 연구 (A Study on Activation of New Mobile Communication Spectrum in the Environment of Mobile Big Data Traffic)

  • 정우기
    • 한국위성정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.42-46
    • /
    • 2012
  • 본 논문은 모바일 광대역 서비스가 활성화되면서 나타나는 모바일 빅 데이터 트래픽의 발생이 모바일 광대역 서비스의 발전을 제약하지 않도록 이동통신 주파수 활성화를 위한 기술 및 경제적 환경 조건을 분석하고 활성화 방안을 제시한다. 새로운 이동통신 주파수의 활성화를 위해서는 투자의 비용과 수익의 균형이 이루어져야 한다. 모바일 빅 데이터 트래픽을 처리하기 위한 새로운 이동통신 주파수의 활성화는 기술과 경제적 요인 그리고 통신사업자 내부 요인과 외부 요인이 결합되어 있다. 투자비용은 내부 요인인 자본적 비용(Capital Expenditure), 운용비용(Operating Expenditure)과 외부요인인 주파수 할당 대가와 관련 있으며 수익은 내부요인인 요금제와 외부 요인인 망중립성 문제와 관련 있다. 새로운 이동통신 주파수의 활성화는 투자비용에 주파수 할당 대가를 포함하고 투자수익에 네트워크 증설이 가능한 요금제 운영과 외부 콘텐츠에 의한 트래픽 증가에 따른 수익이 포함되어 투자비용과 수익이 균형을 이루어야 한다.

네트워크 분석을 이용한 거점평가지표 개발 및 특성분석 (Development and Analysis of the Interchange Centrality Evaluation Index Using Network Analysis)

  • 김수현;박승태;우선희;이승철
    • 대한교통학회지
    • /
    • 제35권6호
    • /
    • pp.525-544
    • /
    • 2017
  • 빅데이터 시대에 발맞추어, 데이터에 기반한 실효성 있는 국토공간 개편의 바람직한 방향을 제시하기 위해 교통 데이터를 활용한 국토개발에 대한 관심이 높아지고 있다. 하지만 현재 교통 데이터에 대한 연구는 데이터 정리 혹은 보정하는 수준에만 머물고 있다. 본 연구는 여기서 더 나아가 데이터를 가공함으로써 국토공간에 존재하는 숨겨진 가치를 제시하고자 한다. 이에 교통 데이터가 네트워크 구조와 유사하다는 점에 착안하여, 네트워크 분석에 사용되는 알고리즘을 통하여 국토공간에 존재하는 가치를 찾고자 하였다. 본 연구는 중심지를 파악하기 위해 PageRank와 HITS알고리즘을 활용하였다. 알고리즘의 거점 평가 지표로서의 성능을 확인하기 위해 TCS데이터를 이용하여 단순교통량과 비교하여 성능을 확인하였다. 이를 통해 단순히 교통량에만 의지하여 제시되었던 중심지들을 더 세분화된 특성에 맞추어 파악할 수 있었다. 알고리즘을 이용하여 찾은 중심지는 시간적, 기능적 특성을 세분화하여 담고 있으므로 경제권 내의 중심지를 판단하는 객관적인 근거로서 지역 거점 선정과 같은 정책적 결정을 위한 기초자료로 활용할 수 있을 것이다.

빅데이터 분석을 활용한 공항 혼잡도 분석 - 김포공항 사례를 중심으로 - (Airport Congestion Analysis with Big Data Analysis - The Case of Gimpo Airport -)

  • 김진아;김진기
    • 한국항공운항학회지
    • /
    • 제28권2호
    • /
    • pp.36-46
    • /
    • 2020
  • This study is designed to help customers use more comfortable airports by predicting congestion and congestion times by identifying the traffic routes of passengers in the airport building by day of the week and time by using Wi-Fi sensor collectors, one of the IoT technologies. Analysis of passenger traffic analysis data showed that the most congested time zones were from noon. to 2p.m. for all facilities, which could be used to improve major facilities. Regression analysis of factors affecting congestion found that self-check-in reduces congestion and check-in counters increases congestion. These findings will provide important implications for operations, including congestion management at airports.

학내 망 자원 효율화를 위한 빅 데이터 트래픽 분석 (Big-Data Traffic Analysis for the Campus Network Resource Efficiency)

  • 안현민;이수강;심규석;김익한;진서훈;김명섭
    • 한국통신학회논문지
    • /
    • 제40권3호
    • /
    • pp.541-550
    • /
    • 2015
  • 급하게 일어나는 인터넷의 활성화는 그 어느 때보다 효율적인 엔터프라이즈 망 운영 방안을 필요로 하고 있다. 효율적인 망 운영을 위해서는 장기간의 트래픽 분석을 통해 망의 특성을 정확히 반영한 운영 정책 적용이 필요하다. 하지만 기존에는 급격하게 증가하는 장기간 트래픽 데이터의 처리가 불가능했고, 다양한 분석 결과를 낼 수 없는 단기간 분석만 이루어졌다. 최근 빅 데이터 분석 플랫폼과 도구의 개발로 인해 장기간 트래픽 분석이 가능하게 되었고, 이를 이용해 망의 특성을 정확히 반영할 수 있는 장기간 트래픽 분석을 통한 엔터프라이즈 망 자원효율화 방안이 요구되고 있다. 본 논문에서는 엔터프라이즈 망에서 발생한 장기간의 트래픽을 수집하고 저장 및 관리하는 방안에 대해 제안한다. 또한 분류기준을 정의하였으며, 수집된 빅 데이터 트래픽을 각 분류 기준으로 분류한 뒤 다각적인 통계 분석을 통해 망 자원을 효율화 하는 방안을 제안한다. 제안하는 방법을 학내 망에 적용하여 실험하였으며, 통계 분석 결과 시간과 공간, 그리고 사용목적에 따라 Quality of Service(QoS)정책을 달리 적용해야 함을 확인하였다.

VTS 빅데이터를 활용한 제주·서귀포 연안 관제 업무량 산정 (Jeju and Seogwipo Costal Control Workload based on VTS Big Data)

  • 김지희;김광일
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.267-268
    • /
    • 2022
  • 제주 연안 해역은 다수의 인명이 승선하는 국제크루즈선, 여객선, 유선 등이 통항하고 어선 조업도 많아 사고 위험성이 높은 해역이나 현재 운영 중인 제주항·민군 복합항과 인근해역에 국한되어 있으므로 제주도 연안 해역 통항 선박의 체계적인 안전관리를 위하여 제주·서귀포 연안에 VTS 시스템을 구축한다. 하지만 현재 해상교통관제센터 관제업무량 산정 기준이 없는 실정이다. 이에 본 연구는 효율적인 해상교통관제 업무량 산정을 위해 VTS 빅데이터를 활용하여 제주·서귀포 연안 관제석 필요 소요 운영인력을 산출하였다. 본 연구는 관제업무량 산정의 기준을 세우는 연구에 기초 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Analysis of Traffic Accident using Association Rule Model

  • Ihm, Sun-Young;Park, Young-Ho
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.111-114
    • /
    • 2018
  • Traffic accident analysis is important to reduce the occurrence of the accidents. In this paper, we analyze the traffic accident with Apriori algorithm to find out an association rule of traffic accident in Korea. We first design the traffic accident analysis model, and then collect the traffic accidents data. We preprocessed the collected data and derived some new variables and attributes for analyzing. Next, we analyze based on statistical method and Apriori algorithm. The result shows that many large-scale accident has occurred by vans in daytime. Medium-scale accident has occurred more in day than nighttime, and by cars more than vans. Small-scale accident has occurred more in night time than day time, however, the numbers were similar. Also, car-human accident is more occurred than car-car accident in small-scale accident.

빅데이터 분석을 통한 정체도로 시각화 및 원인분석 (Visualization and Cause Analysis of Stagnation Road through Big Data Analysis)

  • 김성진;이현식
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.153-154
    • /
    • 2023
  • 대한민국의 교통 혼잡 비용은 2018년 기준 67조 원으로 국내총생산(GDP)의 3.6%를 차지하고 있다. 또한 국민 교통 고통지수는 매년 상승하고 있는 추세이다. 본 논문에서는 인구 밀집도가 가장 높은 서울시의 교통 혼잡 문제를 해결하기 위해 빅데이터 분석을 통한 효과적인 정책을 제공하고자 한다. 국가 표준 링크 아이디(LINK_ID)와 노드 아이디(NODE_ID)를 통해 위도 경도 데이터를 추출하고, 정체성이 높은 도로를 시각화해 추려진 특성과 공통점을 파악한다. 이를 토대로 정체성을 낮출 방안을 제공하고자 한다.

  • PDF

기계학습과 시뮬레이션 기법을 융합한 교통 상태 예측 방법 개발 연구 (A Study on Traffic Prediction Using Hybrid Approach of Machine Learning and Simulation Techniques)

  • 김예은;김성훈;여화수
    • 한국ITS학회 논문지
    • /
    • 제20권5호
    • /
    • pp.100-112
    • /
    • 2021
  • 빅데이터의 등장과 더불어 교통 상태 예측은 과거 이력 데이터 분석 방식에 힘을 싣고 발전되어 왔으나, 이 방법은 관측된 적 없는 돌발 상황에 충분히 대응하지 못한다는 약점이 있다. 본 연구에서는 기계학습과 시뮬레이션 기법의 융합을 통해 돌발 상황 발생 시 교통 상태 예측 정확도 감소를 보완할 수 있는 예측 기법을 제시한다. 데이터 기반 방식의 맹점은 과거에 관측된 적 없는 데이터 패턴이 인지되었을 때 드러난다. 본 연구에서는 시뮬레이션을 이용하여 과거 이력 데이터를 보강하는 방법으로 문제를 해결하고자 하였다. 제시한 방법은 기계학습 기반의 교통 예측을 수행하고, 예측 결과와 실시간으로 수집되는 교통 데이터를 지속적으로 비교하여 돌발 상황 발생 여부를 판단한다. 돌발 상황이 인지되었을 시, 시뮬레이션을 통해 생성한 데이터베이스를 활용하여 예측을 수행한다. 본 연구에서 제시한 방법은 실제 도로 구간을 대상으로 검증되었으며, 검증 결과 돌발 상황에서의 교통 상태 예측 정확도 향상을 확인할 수 있었다. 본 연구에서 제시한 융합 교통 예측 방법은 향후 교통 예측 고도화에 이바지할 수 있을 것으로 전망된다.