• Title/Summary/Keyword: Traditional Engineers

Search Result 1,533, Processing Time 0.026 seconds

Design Concept of the Seoul World Cup Stadium (서울월드컵경기장의 건축개념)

  • 류춘수
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.5
    • /
    • pp.18-24
    • /
    • 2001
  • This Seoul World Cup Stadium is designed not only for FIFA's Football Game. This stadium would be a very huge multi-use urvan structure as a core of new developing west seoul. Architect's basic design concept is based on the combination of traditional korean symbolic form and ultra mordern high-tech.

  • PDF

Thermoeconomic Analysis of Hybrid Desiccant Cooling System Driven by District Heating (지역난방에 연계된 하이브리드 제습냉방시스템의 경제성 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.721-729
    • /
    • 2014
  • A hybrid desiccant cooling system (HDCS) that uses a heat pump driven by district heating instead of a sensible rotor can provide an increased energy efficiency in summer. In this paper, the summer operation costs and initial costs of both the HDCS and traditional systems are analyzed using annual equal payments, and national benefits are found from using the HDCS instead of traditional systems. In the analysis results, the HDCS reduces the operation cost by 30 compared to the traditional systems, and each HDCS unit has 0.079 TOE per year of primary energy savings and 0.835 $TCO_2$ per year of $CO_2$ emission reduction more than the traditional systems. If HDCSs were to be installed in 680,000 households by 2020, this would produce a replacement power effect of 463 MW. Despite this savings effect, HDCSs require a government subsidy before they can be supplied because the initial cost is higher than that of traditional systems. Thus, this paper calculates suitable subsidies and suggests a supply method for HDCSs considering the national benefits.

Development of Deep Learning AI Model and RGB Imagery Analysis Using Pre-sieved Soil (입경 분류된 토양의 RGB 영상 분석 및 딥러닝 기법을 활용한 AI 모델 개발)

  • Kim, Dongseok;Song, Jisu;Jeong, Eunji;Hwang, Hyunjung;Park, Jaesung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.27-39
    • /
    • 2024
  • Soil texture is determined by the proportions of sand, silt, and clay within the soil, which influence characteristics such as porosity, water retention capacity, electrical conductivity (EC), and pH. Traditional classification of soil texture requires significant sample preparation including oven drying to remove organic matter and moisture, a process that is both time-consuming and costly. This study aims to explore an alternative method by developing an AI model capable of predicting soil texture from images of pre-sorted soil samples using computer vision and deep learning technologies. Soil samples collected from agricultural fields were pre-processed using sieve analysis and the images of each sample were acquired in a controlled studio environment using a smartphone camera. Color distribution ratios based on RGB values of the images were analyzed using the OpenCV library in Python. A convolutional neural network (CNN) model, built on PyTorch, was enhanced using Digital Image Processing (DIP) techniques and then trained across nine distinct conditions to evaluate its robustness and accuracy. The model has achieved an accuracy of over 80% in classifying the images of pre-sorted soil samples, as validated by the components of the confusion matrix and measurements of the F1 score, demonstrating its potential to replace traditional experimental methods for soil texture classification. By utilizing an easily accessible tool, significant time and cost savings can be expected compared to traditional methods.

Developing Trends of Spinning Process for Manufacturing Thrust Chamber of Launch Vehicle (발사체 연소기 제작에서 스피닝 공정 개발 동향)

  • Lee, Keumoh;Ryu, Chulsung;Choi, Hwanseok;Heo, Seongchan;Kwak, Junyoung;Choi, Younho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.64-71
    • /
    • 2015
  • Spinning process is generally used for manufacturing axisymmetrical, thin-walled thickness and hollow circular cross-section parts. Traditional spinning technology is classified to conventional spinning and power spinning(shear spinning and flow forming). Literature surveys of spinning application for regenerative cooling chamber and divergent nozzle of liquid propellent rocket thrust chamber have been conducted. Most spinning technology has been used mandel for manufacturing chamber and nozzle. Recently, hot spinning has been used much compared to traditional cold spinning.

Software development for the machine element design course (기계요소설계 과목을 위한 교육용 소프트웨어 개발)

  • Park, Gyung-Jin;Do, Sung-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1348-1355
    • /
    • 1997
  • Machine element design is a very important course in the undergraduate program of mechanical engineering in that it presents traditional design concepts. While computer aided design(CAD) receives more attention, students tend to ignore the machine element design or traditional design concepts. However, design methodologies related to machine elements are utilized quite often in practical fields. Also, design methodologies provide good insight for the decision making process of modern design. Generally, CAD is used for simple drafting without the real design process in the undergraduate program. Design software has been developed for various machine elements. Through menu display, a user can select or furnish the design input such as design objects, dimensions, environmental forces and usages, and safety factors. Then the software carries out the design processes which are the same as those of textbooks. The result of the design is filtered to have the values in the standards. The designed machine element is drawn via commercial CAD software. The software has been developed with C language on a personal computer. The developed software is being utilized successfully in a design course, and the experiences are discussed in this paper. The software can be used in industries which require the repeated process of the machine element design.

A Study on the Comparison of the Emotional Experiment from Fluorescent Lamp and LED Lighting (사무공간의 사용자 행위별 형광램프와 LED조명 감성비교 실험에 관한 연구)

  • Lee, Min-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.8-17
    • /
    • 2012
  • Unlike traditional lightings, LED lighting is one of objects that sends user an emotional segments through brightness control from various color temperature and dimming control. Also, within present interior lighting environment, emotional researches about traditional fluorescent lamp and newly implemented LED lighting environment are in active progress. Despite the fact adjectives describing emotions and scale modeling have been repeatedly used in many cases for a long time, there seems to be a lack of results in reliability, and there is a limitation for applying into actual lighting design. The purpose of this study is to construct an actual sized test-bed, which is used to draw out one's emotional words of behavior patterns from inner emotional experiences about lighting environment in an office space. Also, having fluorescent lamp and LED lighting as the main test subjects, we have tested emotional parts according to the changes of color temperature and adjective vocabularies chosen from user's action, and we have compared and analyzed the drawn out data. Also, having fluorescent lamp and LED lighting as the main test subjects, we have tested emotional parts according to the changes of color temperature and adjective vocabularies chosen from user's action, and we have compared and analyzed the drawn out data.

Analysis of Flow-Weighted Mean Concentration(FWMC) Characteristics from Rural Watersheds (농업 및 산림유역의 강우유출수 유량가중평균농도 분석)

  • Shin, Min-Hwan;Shin, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Stream flow and water quality were measured and analyzed with respect to flow-weighted mean concentrations (FWMCs) of 21 rainfall events from a forested watershed (Forest Research Watershed: FRW) and two mixed watersheds of agriculture and forest (YuPo-Ri Watershed: YPW and WolGog-ri Watershed: WGW) located in the middle of the North Han River basin. The monitoring of each watershed was one year and conducted between 2004 and 2006. YPW showed more intensive agricultural practices than WGW where traditional practices were common. The average of the 21 FWMCs were in the order of YPF>WGW>FRW and were significantly different from each other at the level of 0.05. It was shown that the land use with intensive agricultural practices produced and discharged more NPS pollutants than that with traditional practices and forest. Specially, SS concentrations from the mixed watersheds were significantly higher than those from FRW. Influencing factors on runoff were analyzed rainfall and watershed area. And rainfall intensity was greater impact on runoff than daily rainfall. Measured water quality indices were shown positive correlations among them in general. However, no significant correlation was shown between COD and nutrients(T-N and T-P).

Optimum Design of Head Slider with Ultra-Thin Air-Lubricated Spacing for Enhanced Flying Characteristics (부상특성 향상을 위한 극소 공기윤활막을 지닌 헤드 슬라이더의 형상 최적 설계)

  • Gang, Tae-Sik;Choe, Dong-Hun;Jeong, Tae-Geon;Park, No-Yeol;Lee, Seong-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.725-733
    • /
    • 2001
  • Flying attitudes of the slider, which are flying height, pitch and roll, are affected by the air flow velocity, the skew angle, and the manufacturing tolerances. Traditional designs of the air bearing surface have considered only the flying performances for the variations in the air flow velocity and the skew angle, which are determined by the radial position. In this study, we present the new shape design of the air bearing surface by considering the track seek performance and the air bearing stiffness as well as the traditional design requirements. The optimization technique is used to improve the dynamic characteristics and operating performance of the newly proposed air bearing surface shape design further. The optimized configuration is obtained automatically and the optimally designed sliders show the enhanced flying and dynamic characteristics.

The Effect of Delamination Shape Factor, $f_s$ on the Delamination Growth Rate, $dA_D/da$ in FRMLs (층간분리 형상계수($F_s$)가 FRMLs의 층간분리 성장률($dA_D/da$)에 미치는 영향)

  • 송삼홍;이원평;김광래;김철웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.398-404
    • /
    • 2003
  • Most previous researches for the hybrid composite materials such as FRMLs(Al/AFRP, Al/GFRP) have evaluated the fatigue delamination behavior using the traditional fracture mechanism. However, most previous researches have not generally been firmed yet. Because delamination growth behavior in hybrid composite should be consider delamination growth rate, $dA_D$/da using the delamination shape factors, fs instead of traditional fracture mechanic parameters. The major purpose of this study was to evaluate the relationship between delamination shape factor, fs and delamination growth rate, $dA_D$ . And a propose parameter on the delamination aspect ratio, b/a. The details of the study are as follow : 1) Relationship between crack length, a and delamination width,b. 2) Relationship between delamination aspect ration, b/a and delamination area rate,($(A_D)_{N}(A_D)_{ALL}$. 3) Variation of delamination growth rate, $dA_D/da$ was attendant on delamination shape factors, $fs_1$, $fs_2$, $fs_3$. The test results indicated the delamination growth rate depends on delamination shape factors.

  • PDF

Study on Component Map Scaling Technique Using a Gas Turbine Test Unit (가스터빈 시험장치를 이용한 구성품 성능선도 축척기법에 관한 연구)

  • 공창덕;고성희;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.105-109
    • /
    • 2003
  • A new scaling method for the prediction of gas turbine components characteristics using experimental data of gas turbine test unit has been proposed. In order to minimize the analyzed performance error in the this study, firstly component maps were constructed by real experimental performance data at some operating conditions and a polynomial obtained from scaling factors at given conditions, and then the simulated performance using the identified maps was compared with the performance result using the currently used traditional scaling method. In comparison, the performance analysis result by the currently used traditional scaling method was met well agreed with the real engine performance at most off-design points except for the design point. However the performance analysis result using the newly proposed scaling method had good agreement with the experimental results within maximum 5% error.

  • PDF