• Title/Summary/Keyword: Tractor Engineering

Search Result 398, Processing Time 0.029 seconds

A study of driving simulation considering the various working modes of electric tractor (전기트랙터의 다양한 작업 환경을 고려한 주행 시뮬레이션에 대한 연구)

  • Yoo, Ilhoon;Kim, Byeongwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5357-5365
    • /
    • 2013
  • In this paper, we propose that a model based design for a electric tractor system by using ASM(Automotive Simulation Models). Before developing a realistic electric tractor, it is essential that defining the capacities of power sources and optimizing the parameters of electric tractor. In additionally, because the electric tractor must have not only driving function but also working function, two PMSM are used at electric tractor. ASM which is based on simulink and Carsim were used to design a electric system and powertrain of electric tractor. For verifying the electric tractor system, we compared the design parameters such as max power, state of charge, drive distance, velocity which were carried out by the simulation and experimental method. The predicted results by the development model were in good agreement with the simulation results. According to simulation of tractor, it is possible to arrange the advanced research of dynamical characteristic of tractor and present the guidelines for the electrical driving system.

Developments in Tractor Design

  • Renius, Kari-Th.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.31-48
    • /
    • 1993
  • Economic background is discussed with consequences for tractor industry and tractor concepts. Particular reference is given to the question of frame chassis instead of block concept. Development trends of tractor components are analyzed for driving system (including four-wheel drive and brakes), diesel engines, transmissions, human engineering , hydraulics and implement control. Consideration is given to electronics and aspects of environmental protection as well. Expected further tractor design developments are summarized at the end of the paper.

  • PDF

FFT analysis of load data during field operations using a 75-kW agricultural tractor

  • Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Lee, Dae-Hyun;Choi, Chang-Hyun;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Analysis of load data during field operations is highly important for optimum design of power drive lines for agricultural tractor. Objective of the paper was to analyze field load data using FFT to determine frequency and the energy levels of meaningful cyclic patterns. Rotary tillage, plowing, baling, and wrapping operations were selected as major field operations of agricultural tractor. An agricultural tractor with power measurement system was used. The tractor was equipped with strain-gauge sensors to measure torque of four driving axles and a PTO axle, speed sensors to measure rotational speed of the driving axles and an engine shaft, pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to calculate power requirement. In rotary tillage, calculated frequency was decreased as travel speed increased. In baler operation, calculated frequency was increased as PTO speed was increased. The calculated peak frequency levels and expected levels were similar. Results of the study would provide information on power utilization patterns and on better design of power drive lines.

Development of Tractor Three-point Hitch Control System using Proportional Valve (비례밸브를 이용한 트랙터 3점 히치 제어 시스템 개발)

  • Lee, Sang-Sik;Park, Won-Yeop
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • Tractor implements are mainly utilized for the tillage operation. The proposed hydraulic system control was implemented to experimental apparatus. An implement control system for tractor using proportional valve was fabricated to improve the working efficiency. Hydraulic circuit included the proportional solenoid valve and on/off solenoid valve and so on. This paper shows results of a specification and design of an implement control system for tractor using proportional valve for automation. It was conducted to evaluate response characteristics of the designed implement control system under experimental conditions of various input flow rates. The results of experiments showd that the response characteristics was sufficient to be used as the implement control system.

Simulation of Sideways Overturning of Agricultural Tractor-Trailer Systems (농용(農用)트랙터-트레일러 시스템의 횡전도(橫轉倒) 시뮬레이션)

  • Jung, S.Y.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.298-309
    • /
    • 1990
  • A mathematical model was developed to simulate sideways overturning of agricultural tractor-trailer systems. Sideways overturn of a tractor-trailer system was described by oscillatory motions of the tractor with respect to the first and second tipping axes, and of the trailer with respect to the drawbar hitch point when either the tractor or trailer rides over an obstacle on slopes. By a computer simulation, critical slope angles of the ground on which the tractor-trailer system is likely to sideways overturn were evaluated under the given operational conditions. Validity of the proposed mathematical model was proved by comparing the results of computer simulation and experiment with a model tractor-trailer system. A close agreement was observed between the two results.

  • PDF

Simulation of Dynamic Characteristics of Agricultural Tractor(I) - Development of 3 Dimensional Dynamic Tractor-Trailer Model - (농용 트랙터의 동특성 시뮬레이션(I) - 3차원 동적 트랙터 -트레일러 모델 개발 -)

  • 박홍제;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.421-432
    • /
    • 1997
  • This study was conducted to investigate dynamic characteristics of agricultural tractor with a particular interest in ride vibrations when it is subjected to various excitation forces. As the first part of it this paper describes development of dynamic model of a tractor-trailer system and its equations of motions. An 3 dimensional 16-degree-of-freedom dynamic model for a tractor-trailer system was developed and its equations of motions were derived, which will be used to investigate the effects of irregular ground surface and excitation forces due to the engine mounted on the tractor. And the excitation forces were also formulated analytically. The transition matrix method and QR algorithm were proposed for numerical solution of the equation of motions fur the developed model. The later parts of the study will include a proof of the model and optimization from which tractors can be designed to minimize the ride vibrations. This will be presented in the second and third papers to be followed shortly.

  • PDF

A Study on Traction Prediction of Agricultural Tractor by Empirical Method (경험적 방법에 의한 트랙터의 견인력 예측에 관한 연구)

  • Lee, Dong-Hoon;Lee, Kyou-Seung;Park, Won-Yeop
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.297-304
    • /
    • 2009
  • This study was conducted to investigate the adequacy of the representative empirical models which are developed for predicting the tractive performance of the tractor operating in various soil conditions. Four representative empirical models which are widely used in the traction prediction of tractor were selected through literature review. Four models were Wismer-Luth, Brixius, Dwyer and Hernandez model, which were empirical traction models of a single wheel. The efficacy of four models were confirmed via comparison of the tractions of tractor predicted using the four models with those measured from traction tests which were conducted for two different driving type (2WD and 4WD) of the tractor on two different soil conditions. The results showed that tractions predicted by Brixius' model, especially for slip range under 20% which the operating efficiency of a tractor is very high, were well consistent with the ones measured from traction test better than the tractions predicted by models which are proposed by Wismer-Luth, Dwyer and Hernandez.

Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula (Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정)

  • Kim, Kyeong-Dae;Kim, Ji-Tae;Ahn, Da-Vin;Park, Jung-Ho;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

A Study on Prediction of Maximum Steering Torque of Tractor on Off-road (Off-road에서 트랙터의 최대 조타력 예측에 관한 연구)

  • Kim S.Y.;Lee K.S.;Lee S.S.;Lee S.B.;Lee J.W.;Park W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.81-87
    • /
    • 2006
  • In this study, a mathematical model was suggested to predict the maximum steering torque of a tractor on off-road. The model took into account the characteristics of soil, including the pressure-sinkage and the shearing characteristics as well as the primary design parameters of steering system of the tractor. The efficiency of the developed model was verified via comparison of the maximum steering torque predicted using the model with those measured from steering torque test. The results showed that the predicted maximum steering torques were in good agreement with the measured ones from the steering test on soft soil in which tractor is generally operated. Thus, we concluded that the model developed in this study could be used for prediction of maximum steering torque of a tractor.

Development of an Automatic Leveling Mechanism and Response Properties for the Slope Tractor (경사지 트랙터의 자동 수평기구부 개발 및 응답 특성에 관한 연구)

  • Lee S. S.;Mun J. H.;Lee K. S.;Park W. Y.;Lee C. H.;Hwang H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.1-7
    • /
    • 2005
  • When a slope tractor works on the slope land, it travels usually along the contour and slope line. In that case, the efficiency of work generally decreases and the safety of the operator caused by the overturn of the tractor should be considered. Maintaining the tractor body being horizontal during the travel is crucial to solve problems. To overcome such a problem, an automatic leveling control system for slope tractor has been developed. The system composed of sensor for measuring rolling and pitching inclination of the slope tractor chassis, controller, hydraulic control system and mechanism. The limit angle of the leveling control was set up to be ${\pm}15^{\circ}C$ for rolling, ${\pm}7^{\circ}C$ for pitching. The proposed control and hydraulic power system was implemented to the prototype slope tractor. This paper shows results about development of the automatic leveling mechanism and response properties for slope tractor.