• Title/Summary/Keyword: Traction motors

Search Result 133, Processing Time 0.033 seconds

Total Enclosed Type Traction Motor Development and Test for Rolling Stock (철도차량용 전폐형 견인전동기 개발 및 시험)

  • Kim, Jung-Chul;Kim, Bong-Chul;Park, Yeong-Ho;Han, Jeong-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3032-3036
    • /
    • 2011
  • Cooling type of traction motor for EMU in domestic is mostly an open type. Its system is a cooling air entered through air inlet cool down a traction motor and an hot air by traction motor get out air outlet. It is easy to cool it down but hard to maintain it. To improve an ability of maintenance, a total enclosed type traction motor is already developed and used in abroad, not an opne type. So we developed a total enclosed type traction motor which will be used in domestic and abroad EMU. We tried to reduce a weight and a size compared with the abroad one. In contrast with open type traction motors which cool off inside of motors, total enclosed motors cool down by cooling exterior frame of motors. In this case, cooling fins or air fan blowing to the exterior of motors are applied. The total enclosed type traction motor developed by us have two housing to block the foreign substance into inner of a motor and have two cooling fan to easy to reduce a heat happened at a coil. In this paper, design of a cooling structure of the total enclosed traction motor developed twice and performance verification through test will be discussed.

  • PDF

A Trend of Direct Drive Traction Motor for Next Generation Railway Vehicles (차세대 철도차량용 직접구동방식 T/M개발관련 기술개발 동향)

  • 권중록;김남해;김근웅;이정일;이종인
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.434-439
    • /
    • 2002
  • The researches on the direct drive system, which directly transfers axle load of the traction motor to wheels, have been developed as a next generation drive system in Japan and Europe. As a result of excluding couplings and gear units, the direct drive system has advantages on the bogie mount space to be smaller sized, lower noisy, more efficient and less weighted than the conventional drive system - indirect drive system. Since the simplification of the direct drive system design depends on the design of the traction motors, the researches on the direct drive system with focusing on the traction motors get started. The advantages/disadvantages of direct drive system, types, structures, cooling systems and interfaces of the traction motors are presented on this paper. Furthermore, the development of other countries on the electric equipments of the next generation railway vehicles are discussed and the necessity & requirement for developing new concepts of traction motors are assured.

  • PDF

A Controller Design for Speed Control of the Switched Reluctance Motor in the Train Propulsion System (열차추진시스템에서 Switched Reluctance Motor의 속도제어를 위한 제어기 설계)

  • Kim, Sung-Soo;Kim, Min-Seok;Lee, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • Electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending energy between motor blocks and traction motors. Currently, switched reluctance motors have been studied because the efficient is higher than induction motors. In this paper, model of the switched reluctance motor is presented and the PID controller is applied to the model for the speed control by using Simulink. Asymmetry converter is used for real-time control and system performance is demonstrated by simulating the speed of switched reluctance motor including PID controller.

Study on Motor Characteristics due to Deviation of the Wheel Diameters with Parallel Operation

  • Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.106-109
    • /
    • 2013
  • It is desirable and advantageous to feed parallel propulsion with induction motors by a single voltage source inverter. However, effects of deviation of the wheel diameters on motor current, rotor speed and torque should be also considered for parallel operation. In order to understand the behavior and characteristics, a simple simulation model is developed by using a commercial Matlab Simulink. From the results, it is clear to manage the diameter deviation of the wheels which are connected to traction motors.

Performance Comparison of the Railway Traction IPM Motors between Concentrated Winding and Distributed Winding

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.118-123
    • /
    • 2013
  • This paper presents performance comparison between concentrated winding and distributed winding of IPMSM (Interior Permanent Magnet Synchronous Motors) which is recently used for light-weight railway applications. Motors are designed on various schemes and analyzed by using FEM (Finite Element Method) instead of EMCNM (Equivalent Magnetic Circuit Network Method) in order to take into account saturation and non-linear magnetic property. The overall performance such as torque, torque ripple, losses, demagnetization, efficiency, power density and so on are investigated in detail at the rated and maximum operating speed. The results of the analysis found that both concentrated and distributed winding IPMSMs are promising candidates for high power railway traction motor.

Development of Direct Drive Motor for Next Generation Train (차세대전동차용 직접구동전동기 개발)

  • Kim, Gil-Dong;Lee, Han-Min;Lee, Jang-Mu;Oh, Se-Chan;Joung, Eui-Jin
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.688-694
    • /
    • 2009
  • As a drive system for next generation train, we have been making research and development of a direct drive traction motor system without the conventional reduction gear. This traction motor is expected to have many advantages such as low noise, reduced maintenance, and energy saving. Due to the demand for high-output motors in the limited space between the wheels, open-ventilating traction motors with gear box have been widely used for many years. However, a conventional open-ventilating traction motor is necessary periodical disassembly to remove the accumulated dust from open-air ventilation. Reducing this burden, as well as increasing energy efficiency and reducing noise, would benefit the next generation of traction motors. To address these needs, KRRI have been developing a fully enclosed type direct drive motor(DDM) with high-efficiency permanent magnet for the next generation train.

  • PDF

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-1 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-1)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Electric railroad systems consist of supply system of electric power and electric locomotive. The electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending minimum energy between motor blocks and traction motors. Recently, induction motors have been used than DC and synchronized motors as traction motors. Speed control of induction motors are used by vector control techniques. In this paper, speed of the induction motor is controlled by using the vector control technique. Control system model is presented by using Simulink. Pulse is controlled by PI and hysteresis controller. IGBT inverter is used for real-time control and system performance is demonstrated by simulating the induction motor which has 210[kW] on the output power.

A Study on Development of Direct Drive Motor for Advanced Urban Transit System (차세대 도시철도 직접구동전동기 개발)

  • Kim, Gil-Dong;Oh, Seh-Chan;Lee, Chang-Mu;Lee, Han-Min;Park, Hyun-June
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.141-143
    • /
    • 2008
  • Due to the demand for high-output motors in the limited space between the wheels in an electric train, self-ventilating traction motors have been used for many years. periodical disassembly maintenance is necessary to remove the small quantities of dust that enter the motor from the open-air ventilation. Reducing this burden, as well as increasing efficiency and reducing noise, would benefit the next generation of moters To address these needs, KRRI is developing a fully enclosed type traction motor, a fully enclosed type traction motor with outer fans, a high-efficiency permanent-magnet synchronous motor and a direct-drive motor(DDM) as traction motors for the next generation of trains.

  • PDF

Stress Analysis and Degradation Mechanism of the Drive Control system for a Railway carriage (철도차량 추진제어장치의 스트레스 분석 및 열화 메커니즘)

  • Kim, Ki-Joon;Wang, Jong-Bae;Choi, Young-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.21-24
    • /
    • 2000
  • Traction motors driven by several type inverters have been subjected to increasing demands for higher operating temperature, more demands for duty cycles, higher starting current, frequent voltage transients and finally severe environmental exposure. For applications to inverter duty, traction motors needs a special insulation system, which has characteristics of increased bond strength, lower operating temperature and higher turn-to-tum insulation. Also it needs major contributors to insulation life and reliability of motors, which more considered by temperature, voltage, frequency, rise time, pulse configuration, wire thickness and insulation materials. In this paper, to evaluate of reliability and expected life, it is analyzed the several stresses and their degradation mechanism on insulation system of AC traction motor.

  • PDF

Output Density Increasing Design for Railway Vehicle Traction Motor using Halbach Magnet Array Structure (Halbach magnet array 구조를 이용한 철도차량용 구동 전동기의 출력밀도 향상 설계 방법)

  • Lee, Ki-Doek;Jun, Hyun-Woo;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1732-1736
    • /
    • 2014
  • Generally, traction motors for railway vehicles are inferior to that of electric vehicle in terms of output density. Traction motors for railway vehicles are relatively free of spatial constraints than motors electric vehicles, but in terms of whole system efficiency, increasing output density of traction motor is helpful. In this paper, using Halbach magnet array structure, output density of traction motor for 40kW class tram was elevated. This paper introduce detailed design process of the Halbach magnet array structure applied model, and check the affects on output characteristics by parameters like rotor shape, airgap diameter and pole ratio. Also, electrical output characteristics were compared between typical SPMSM model and Halbach magnet array model, which has same output size.