• Title/Summary/Keyword: Traction drive

Search Result 152, Processing Time 0.02 seconds

A Study on the Dynamic Behaviors of Toroidal Infinitely Variable Transmission (토로이달 무단변속기 동적 거동에 관한 연구)

  • Jang Siyoul;Choi Wan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.348-354
    • /
    • 2003
  • An analysis of the dynamic behavior between disk and roller has been performed when the torque is transmitted to toroidal IVT (Infinitely Variable Transmission). The contact area, shape and pressure with elliptical shapes between disk and roller are computed as the transmission ratios are changed. This study will give the information of contact shapes between roller-input dist and roller-output disk which are working under the most severe condition. The computed results are expected to guide the design criteria for the enhanced endurance li(e. Furthermore, the investigation of contact behaviors is very crucial to develop the traction oil that the efficiency of IVT system is most dependent on.

  • PDF

A Study on the Evaluation of Reliability and Expected Life for the Insulation System of Traction Motors in Urban Transit E.M.U (철도차량용 견인전동기의 수명예측 및 절연신뢰성 평가 방법에 관한 연구)

  • Wang, Jong-Bae;Kim, Sang-Keol;Lee, Heon-Don;Oh, Hyun-Seok;Kim, Ki-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.449-451
    • /
    • 1999
  • When the traction motor for urban transit E.M.U is driven with VVVF controlled inverter, the insulation degradation factors on the 200 Class insulation system of VPI process are analyzed with considering dielectric, mechanical properties, thermal stability, chemical resistivity and compatibility. A new test method of complex accelerating degradation is proposed to evaluate the insulation reliability and the long-term life including harmonic loss and transient surge stress due to PWM inverter drive.

  • PDF

Speed Estimation at Coasting Condition in a Sensorless Induction Motor Drive for Railway Vehicle Traction System (철도차량 추진 제어를 위한 유도전동기 센서리스 구동 시스템에서 타행운전시 속도 추정)

  • Kim, Sang-Hoon;Park, Nae-Chun
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.31-35
    • /
    • 2010
  • In this paper, a speed estimation method at coasting operation in an induction motor speed sensorless control for railway vehicle traction systems is presented. At coasting operation, there is no information obtaining rotor speed since all switches of an inverter are turned off. The inverter frequency should be synchronized with the rotor frequency for repowering at coasting condition. The proposed method injects DC current to the induction motor during a short time, then the flux angle and rotor speed needed for control can be estimated rapidly.

  • PDF

BLDC motor control method for hybrid electric vehicle (하이브리드 자동차용 BLDC 전동기 제어 방법)

  • Kang, Sin-Won;Jang, Jong-Hoon;Jeong, Ji-Ye;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.149-151
    • /
    • 2009
  • Hybrid electric vehicle has three operating mode, depending on the operation of the engine and electric motor. According to the speed range of BLDC motor, In hybrid traction mode, both the engine and electric motor deliver to drive train. Battery charge mode, the electric motor operates as generator and is driven by the engine to charge the batteries. In engine alone traction mode, the electric motor is do-energized, and vehicle is propelled by the engine alone. we propose hysteresis current control technique to maintain constant speed in the motor load torque at the reverse direction. The proposed method is verified by using Matlab Simulink software.

  • PDF

A Study on the Parallel Operation of a Front-end-converter for a High Speed Electric Traction Drive (고속전철 4상한 입력 컨버터 병렬 운전에 관한 연구)

  • Ryoo, Hong-Je;Woo, Myung-Ho;Kim, Jong-Soo;Kim, Won-Ho;Rim, Geun-Hie;Gopakumar, K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.121-124
    • /
    • 1998
  • Front end AC to DC converters of the boost type are used in traction applications for generating the DC link for the inverters. A GTO based converter is usually switched with a switching frequency of 300 to 500Hz, resulting in low frequency harmonic problems. In order to avoid this, multiple converters with Phase shifted carrier waveforms are used to suppress the low frequency harmonics. A detailed study of an AC to DC converter, with two converters parallely operated with Phase shifted carrier wave farms is Presented in this paper.

  • PDF

Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles (병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어)

  • Park, Joon-Young;Sim, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

Design of Planetary Gear Drive Unit for Drive Conversion of Transfer case (Transfer case의 구동변환을 위한 유성기어장치 구동부 설계)

  • Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Since the four-wheel drive transmits the driving force to all four wheels, the traction with the road surface increases, thereby increasing the driving force. However, it has the disadvantage of lowering fuel efficiency. Therefore, four-wheel drive is commonly used as a method of converting to optional four-wheel drive when necessary while driving in two-wheel drive. This selective four-wheel drive converts the driving force by mechanically changing the electric signal sent by the driver in the transfer case. In this study, in order to mechanically change the electrical signal, a reducer is applied to the motor to increase the torque to perform the function. Therefore, in this study, a reduction mechanism applicable to the motor inside the transfer case applied to convert the drive is derived, and the reduction ratio applying the planetary gear type is optimized accordingly. And based on the derived reduction ratio, two sets of planetary gears using a ring gear in common were applied to develop a planetary gear tooth type in which the input shaft and output shaft are decelerated in the same phase. Optimization design was carried out.

Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula (Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정)

  • Kim, Kyeong-Dae;Kim, Ji-Tae;Ahn, Da-Vin;Park, Jung-Ho;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

COMPARISON OF CONVERTER TOPOLOGIES FOR A SWITCHED RELUCTANCE MOTOR

  • Rim, Geun-Hie;Kang, Wook
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.676-684
    • /
    • 1992
  • The advent of inexpensive high power switching devices revived the interest in switched reluctance motor(hereafter referred to as SRM) drives. In the late 60's, the potential of SRM for traction application attracted researchers. Since then the progress in research of the SRM drive has been phenomenal. In this paper, a review of the basic principle of operation of the SRM, currently available converter topologies, the controller requirements and some design considerations are included.

  • PDF