• 제목/요약/키워드: Traction Force

검색결과 231건 처리시간 0.023초

견인/제동/타행 성능 해석 프로그램 개발 및 검증 (Development and Verification of the Analysis Program for Traction/Braking/Coasting Performance)

  • 김영국;김석원;목진용;김기환;김영모;박태원
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.153-160
    • /
    • 2007
  • To start or stop the train safely within the limited traveling distance, it is necessary to guarantee the proper traction or braking force. Presently, most trains are run by the electrical power and have adopted a combined electrical and mechanical(friction) braking system. In order to design a good traction or a brake system, it is essential for designers to predict the traction or brake performance. In this paper, the traction/coasting/braking performances analysis program has been developed and verified by comparing the simulation results with on-line test results of the Korean high speed train(HSR-350); Both results match very well. Consequently, the designers can predict the traction/coasting/braking performances of trains by using the proposed program under various operating conditions.

보행용(步行用) 트랙터의 율인성능(率引性能) 모형(模型)과 분석(分析) 프로그램의 개발 (Development of Traction and Field Performance Model of Two-Wheel Tractor)

  • 이중용;정창주
    • Journal of Biosystems Engineering
    • /
    • 제9권2호
    • /
    • pp.19-26
    • /
    • 1984
  • This study intended to develop the prediction models of the traction and field performance of two-wheel tractors by using the principles which were applied for predicting those of the four-wheel tractors. The traction model developed in this study consists of the net traction coefficient, rolling resistance coefficient and traction efficiency, Which are expressed as functions of both wheel numeric and slip. A computer program on the field performance of two-wheel tractors is also developed to predict the drawbar horsepower, traction force, traction efficiency, rotational speed of engine and engine horsepower if the characteristics of the engine performance and operational condition of the two-wheel tractor are known. Based on the developed models, the conditions of basic variables to maximize the field performance were analyzed so as to assess the existing two-wheel tractor.

  • PDF

Design to Reduce Cost and Improve the Mechanical Durability of IPMSM in Traction Motors

  • Lee, Ki-Doek;Lee, Ju
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.106-114
    • /
    • 2014
  • The interior permanent-magnet synchronous motor (IPMSM) is often used for the traction motor of hybrid electric vehicles (HEVs) and electric vehicles (EVs) due to its high power density and wide speed range. This paper introduces the 120kW class IPMSM for traction motors in military trucks. This system, as a SHEV (series hybrid electric vehicle), requires a traction motor that can generate high torque. This study introduces a way to reduce costs by proposing a design approach that creates reluctance torque that can be maximized by varying the dq-axis inductance. If a model designed by a design approach meets the desired torque, the magnetic torque can be reduced by an amount equal to the increase in reluctance torque and consequently the amount of permanent magnets can be reduced. A reduction gear and high speed operation of motors are necessary for the miniaturization of the motor. Thus, a fairly large centrifugal force is generated due to the high speed rotation. This force causes mechanical interference between the rotor and the stator, and a design approach for adding an iron bridge is explained to solve the interference. In this study, the initial model and the improved model that reduces cost and improves mechanical durability are compared by FEA, and the models are produced. Finally, the FEM results were verified experimentally.

트랜섬 파이프 간격이 동력대차-견인전동기간 강체 모드 공진응답에 미치는 영향에 관한 연구 (The influence of transom pipe gap on the resonance response in motorized bogie and traction motor system)

  • 김재환;송시엽;임효석
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.340-343
    • /
    • 2019
  • 본 논문은 동력차에서 견인전동기 기진 주파수와 견인전동기 강체 모드 공진 문제로 인해 발생할 수 있는 현상에 대해 소개하고, 이를 제어하는데 효과적인 설계인자를 해석적으로 검토해보았다. 회전 속도가 변하는 회전기기의 경우, 공진 문제를 해결하기 위해서는 공진주파수 대역을 상용 운전 범위 바깥으로 이동시키거나 동강성을 크게 하는 등의 방법을 통하여 공진 응답이 낮아지도록 하는 방안이 있다. 견인전동기의 운전 범위는 일반적으로 0 r/min ~ 4800 r/min으로 대차모드가 이 운전 영역대를 벗어나게 설계하는 것은 현실적으로 불가능 하다. 따라서 공진 응답에 영향을 주는 설계 인자를 찾아 이를 적절하게 조정하여야 한다. 유한요소 해석 검토 결과, 견인전동기 강체모드 공진 응답에 영향을 주는 설계인자는 트랜섬파이프 간격으로 간격이 지나치게 넓게 설계될 경우 견인전동기 기진력과 강체 모드 간 공진 시 과도한 진동이 발생될 수 있음을 파악하였다.

전기자동차의 조향과 추진을 위한 지능형 통합 제어 시스템 (An intelligent integrated control system for steering and traction of electric vehicles)

  • 서일홍;박명관
    • 전자공학회논문지B
    • /
    • 제33B권7호
    • /
    • pp.21-31
    • /
    • 1996
  • An intelligent integrated control system is designed for the active steering and the left/right traction force distribution control of electric vehicles, where input-output linearization is employed. Also, a fuzzy-rule-based cornering force estimator is suggested to avoid using an uncertain highly nonlinear expression, and a neural network compensator is additively utilized for the estimator to correctly find cornering forece. With these techniques, the proposed control system is shown by simulation results to be robust against drastic change of the external environments such as road conditions.

  • PDF

테니스화겉창과 테니스 스포츠바닥재간의 마찰관계상관 분석 (A analysis of friction relation between tennis outsole and tennis playing surfaces)

  • 김정태
    • 한국운동역학회지
    • /
    • 제12권2호
    • /
    • pp.361-380
    • /
    • 2002
  • 마찰력(friction)은 급정지나 급출발, 또는 두 동작이 동시에 이루어질 때, 미끄럼방지는 효과적으로 이루어져야 하며, 특히 테니스, 농구, 배구 등 코트 스포츠에 있어서 최적의 마찰력은 필수적이다. 이러한 마찰력은 무게가 많이 나갈수록, 다른 물체와의 접촉면이 넓을수록, 장력이 클수록 커진다. 또한 표면이 매끄러울 때보다는 거칠수록 커지는 특성을 가지며, 본 연구의 목적은 테니스화겉창과 테니스코트에 설치되어 있는 스토츠바닥재사이에 마찰력을 대해서 고찰해 보고자 하였으며, 마찰력운동 및 이의 관련 선행 국외 연구활동이 어떻게 이루어졌는지를 종단적 국외문헌조사를 통해 어떤 상관관계가 있는지를 구명해 보고자 하였다. 국내 테니스화의 연구와 테니스스포츠바닥재간의 국외 연구활동의 종단적 연구지표로서 스포츠와 스포츠바닥재간의 마찰력 관련주요연구연표를 작성해 봄으로서 연구활동의 경과추이를 조사하였다. 테니스 바닥재 현황으로는 테니스코트의 표층재는 일반적으로 천연재료를 사용한 클레이계코트와 합성재료를 사용한 전 천후계 하드코트로 구별된다. 본 연구를 통하여 테니스화 겉창과 테니스 스포츠바닥재간의 마찰력의 국외선행연구현황 이해를 돕고, 향후 국내에서 스포츠화 겉창과 마찰력, 스포츠바닥재와 마찰력의 평가에 대한 연구시 국외에서 기 실시된 연구를 중복연구하는 시행착오 방지 및 국외 선행연구에 대한 기초자료 및 연구현황을 자세히 파악할 수 있을 것으로 사료된다.

Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position

  • Song, Jae-Won;Lim, Joong-Ki;Lee, Kee-Joon;Sung, Sang-Jin;Chun, Youn-Sic;Mo, Sung-Seo
    • 대한치과교정학회지
    • /
    • 제46권4호
    • /
    • pp.242-252
    • /
    • 2016
  • Objective: Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods: Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results: In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions: This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion.

Biomechanical analysis for different mandibular total distalization methods with clear aligners: A finite element study

  • Sewoong Oh;Youn-Kyung Choi;Sung-Hun Kim;Ching-Chang Ko;Ki Beom Kim;Yong-Il Kim
    • 대한치과교정학회지
    • /
    • 제53권6호
    • /
    • pp.420-430
    • /
    • 2023
  • Objective: The purpose of this finite element method (FEM) study was to analyze the biomechanical differences and tooth displacement patterns according to the traction direction, methods, and sites for total distalization of the mandibular dentition using clear aligner treatment (CAT). Methods: A finite element analysis was performed on four FEM models using different traction methods (via a precision cut hook or button) and traction sites (mandibular canine or first premolar). A distalization force of 1.5 N was applied to the traction site by changing the direction from -30 to +30° to the occlusal plane. The initial tooth displacement and von Mises stress on the clear aligners were analyzed. Results: All CAT-based total distalization groups showed an overall trend of clockwise or counterclockwise rotation of the occlusal plane as the force direction varied. Mesiodistal tipping of individual teeth was more prominent than that of bodily movements. The initial displacement pattern of the mandibular teeth was more predominant based on the traction site than on the traction method. The elastic deformation of clear aligners is attributed to unintentional lingual tipping or extrusion of the mandibular anterior teeth. Conclusions: The initial tooth displacement can vary according to different distalization strategies for CAT-based total distalization. Discreet application and biomechanical understanding of traction sites and directions are necessary for appropriate mandibular total distalization.

강체차륜(剛體車輪)의 견인력(牽引力) 추정(推定) 모형(模型) (Traction Model of Rigid Wheels)

  • 조병용;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제14권3호
    • /
    • pp.151-157
    • /
    • 1989
  • A mathematical model was developed to predict traction forces of rigid wheels. The modeling was based on the energy principle that the total energy delivered to a driving wheel is equal to the works done by the useful traction force and motion resistance of that wheel. The effect of the wheel slippage was also included in the modeling. Verification of the proposed model was provided by comparing the tractive coefficients predicted by the model to those obtained experimentally at the in-door soil bin tests. The model predictions were found to be a reasonable agreement with the experimental results.

  • PDF

3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구 (Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements)

  • 오정식;김유일;전석희
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.