• Title/Summary/Keyword: Tracking performance

Search Result 3,316, Processing Time 0.026 seconds

T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship (선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어)

  • Yu-Soo LEE;Soon-Kyu HWANG;Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.

An Overloaded Vehicle Identifying System based on Object Detection Model (객체 인식 모델을 활용한 적재 불량 화물차 탐지 시스템)

  • Jung, Woojin;Park, Jinuk;Park, Yongju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1794-1799
    • /
    • 2022
  • Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Also, we propose an integrated system for tracking the detected vehicles. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data.

Image Restoration using Pattern of Non-noise Pixels in Impulse Noise Environments (임펄스 잡음 환경에서 비잡음 화소의 패턴을 사용한 영상복원)

  • Cheon, Bong-Won;Kim, Marn-Go;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.407-409
    • /
    • 2021
  • Under the influence of the 4th industrial revolution, various technologies such as artificial intelligence and automation are being grafted into industrial sites, and accordingly, the importance of data processing is increasing. Digital images may generate noise due to various reasons, and may affect various systems such as image recognition and classification and object tracking. To compensate for these shortcomings, we propose an image restoration algorithm based on pattern information of non-noise pixels. According to the distribution of non-noise pixels inside the filtering mask, the proposed algorithm switched the filtering process by dividing the interpolation method into a pattern that can be applied, a pattern based on region division, and a randomly arranged pixel pattern. preserves and restores the image. The proposed algorithm showed superior performance compared to the existing impulse noise removal algorithm.

  • PDF

Correlation Extraction from KOSHA to enable the Development of Computer Vision based Risks Recognition System

  • Khan, Numan;Kim, Youjin;Lee, Doyeop;Tran, Si Van-Tien;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.87-95
    • /
    • 2020
  • Generally, occupational safety and particularly construction safety is an intricate phenomenon. Industry professionals have devoted vital attention to enforcing Occupational Safety and Health (OHS) from the last three decades to enhance safety management in construction. Despite the efforts of the safety professionals and government agencies, current safety management still relies on manual inspections which are infrequent, time-consuming and prone to error. Extensive research has been carried out to deal with high fatality rates confronting by the construction industry. Sensor systems, visualization-based technologies, and tracking techniques have been deployed by researchers in the last decade. Recently in the construction industry, computer vision has attracted significant attention worldwide. However, the literature revealed the narrow scope of the computer vision technology for safety management, hence, broad scope research for safety monitoring is desired to attain a complete automatic job site monitoring. With this regard, the development of a broader scope computer vision-based risk recognition system for correlation detection between the construction entities is inevitable. For this purpose, a detailed analysis has been conducted and related rules which depict the correlations (positive and negative) between the construction entities were extracted. Deep learning supported Mask R-CNN algorithm is applied to train the model. As proof of concept, a prototype is developed based on real scenarios. The proposed approach is expected to enhance the effectiveness of safety inspection and reduce the encountered burden on safety managers. It is anticipated that this approach may enable a reduction in injuries and fatalities by implementing the exact relevant safety rules and will contribute to enhance the overall safety management and monitoring performance.

  • PDF

Development of the Path Generation and Control System for Unmanned Weeding Robot in Apple Orchards (사과 과원 무인 제초를 위한 작업 경로 생성 및 경로 제어 시스템 개발)

  • Jintack Jeon;Hoseung Jang;Changju Yang;Kyoung-do Kwon;Youngki Hong;Gookhwan Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • Weeding in orchards is closely associated with productivity and quality. The customary weeding process is both labor-intensive and time-consuming. To solve the problems, there is need for automation of agricultural robots and machines in the agricultural field. On the other hand, orchards have complicated working areas due to narrow spaces between trees and amorphous terrain. Therefore, it is necessary to develop customized robot technology for unmanned weeding work within the department. This study developed a path generation and path control method for unmanned weeding according to the orchard environment. For this, the width of the weeding span, the number of operations, and the width of the weeding robot were used as input parameters for the orchard environment parameters. To generate a weeding path, a weeding robot was operated remotely to obtain GNSS-based location data along the superheated center line, and a driving performance test was performed based on the generated path. From the results of orchard field tests, the RMSE in weeding period sections was measured at 0.029 m, with a maximum error of 0.15 m. In the steering period within row and steering to the next row sections, the RMSE was 0.124 m, and 0.047 m, respectively.

Categorized VSSLMS Algorithm (Categorized 가변 스텝 사이즈 LMS 알고리즘)

  • Kim, Seon-Ho;Chon, Sang-Bae;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.815-821
    • /
    • 2009
  • Information processing in variable and noisy environments is usually accomplished by means of adaptive filters. Among various adaptive algorithms, Least Mean Square (LMS) has become the most popular for its robustness, good tracking capabilities and simplicity, both in terms of computational load and easiness of implementation. In practical application of the LMS algorithm, the most important key parameter is the Step Size. As is well known, if the Step Size is large, the convergence rate of the algorithm will be rapid, but the steady state mean square error (MSE) will increase. On the other hand, if the Step Size is small, the steady state MSE will be small, but the convergence rate will be slow. Many researches have been proposed to alleviate this drawback by using a variable Step Size. In this paper, a new variable Step Size LMS(VSSLMS) called Categorized VSSLMS (CVSSLMS) is proposed. CVSSLMS updates the Step Size by categorizing the current status of the gradient, hence significantly improves the convergence rate. The performance of the proposed algorithm was verified from the view point of convergence rate, Excessive Mean Square Error(EMSE), and complexity through experiments.

Nonlinear intelligent control systems subjected to earthquakes by fuzzy tracking theory

  • Z.Y. Chen;Y.M. Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.291-300
    • /
    • 2024
  • Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.

Development of a GNSS Signal Generator Considering Reception Environment of a Vehicle (이동체의 수신 환경을 고려한 GNSS 신호 생성기 개발)

  • Cho, Sung Lyong;Park, Chansik;Hwang, Sang Wook;Choi, Yun Sub;Lee, Ju Hyun;Lee, Sang Jeong;Pack, Jeong-Ki;Lee, Dong-Kook;Jee, Gyu-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.811-820
    • /
    • 2012
  • GNSS signal is vulnerable to jamming signal because of well-known signal structure and weak signal power. For these reasons, the need for analysis of jamming effects and anti-jamming techniques of is increasing. In this paper, a GNSS signal generator is designed which includes a radio wave propagation model for six kind of tactical environments and a body masking model for the reception environment of a vehicle. The radio wave propagation model for downtown, rural, forest, coastline, waste land and snow or ice area is designed using two-ray model. The body masking model is designed the effect which the antenna is affected by the reception environment of a vehicle and radiation pattern from a user configuration. The performance of generated signals from the GNSS signal generator considering reception environment of a vehicle is evaluated by a commercial GPS L1 receiver(NordNav) in normal and jamming environment. Also, the generated GNSS signal is compared to a commercial GPS L1 H/W based RF signal generator(STR4500). The results show that the designed GNSS signal generator in a normal environment compared to the same navigation performance. In jamming environment, it is shown that the body masking effect and GNSS signal acquisition and tracking loss in compliance with the jamming signal are precisely working in the reception environment of a vehicle.

A new Clustering Algorithm for the Scanned Infrared Image of the Rosette Seeker (로젯 탐색기의 적외선 주사 영상을 위한 새로운 클러스터링 알고리즘)

  • Jahng, Surng-Gabb;Hong, Hyun-Ki;Doo, Kyung-Su;Oh, Jeong-Su;Choi, Jong-Soo;Seo, Dong-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.1-14
    • /
    • 2000
  • The rosette-scan seeker, mounted on the infrared guided missile, is a device that tracks the target It can acquire the 2D image of the target by scanning a space about target in rosette pattern with a single detector Since the detected image is changed according to the position of the object in the field of view and the number of the object is not fixed, the unsupervised methods are employed in clustering it The conventional ISODATA method clusters the objects by using the distance between the seed points and pixels So, the clustering result varies in accordance with the shape of the object or the values of the merging and splitting parameters In this paper, we propose an Array Linkage Clustering Algorithm (ALCA) as a new clustering algorithm improving the conventional method The ALCA has no need for the initial seed points and the merging and splitting parameters since it clusters the object using the connectivity of the array number of the memory stored the pixel Therefore, the ALCA can cluster the object regardless of its shape With the clustering results using the conventional method and the proposed one, we confirm that our method is better than the conventional one in terms of the clustering performance We simulate the rosette scanning infrared seeker (RSIS) using the proposed ALCA as an infrared counter countermeasure The simulation results show that the RSIS using our method is better than the conventional one in terms of the tracking performance.

  • PDF

Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape (실링 테이프 적용에 따른 시공조인트 균열 저항성 평가)

  • Lee, JaeJun;Lee, Seonhaeng;Kim, Du-Byung;Lee, Jinwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.