• Title/Summary/Keyword: Tracking network

Search Result 1,003, Processing Time 0.036 seconds

Realization of a neural network controller by using iterative learning control (반복학습 제어를 사용한 신경회로망 제어기의 구현)

  • 최종호;장태정;백석찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.230-235
    • /
    • 1992
  • We propose a method of generating data to train a neural network controller. The data can be prepared directly by an iterative learning technique which repeatedly adjusts the control input to improve the tracking quality of the desired trajectory. Instead of storing control input data in memory as in iterative learning control, the neural network stores the mapping between the control input and the desired output. We apply this concept to the trajectory control of a two link robot manipulator with a feedforward neural network controller and a feedback linear controller. Simulation results show good generalization of the neural network controller.

  • PDF

A Study of the Interference Varying from a NGSO network to a GSO Network according to NGSO Satellite Tracking Strategies (비정지궤도 위성망의 위성 선정 방식에 따른 정지궤도 위성망으로의 간섭량 변화에 대한 연구)

  • 강병수;권태곤;박세경
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.841-844
    • /
    • 1999
  • The interference situation from NGSO/FSS network to GSO/FSS network is more complicated than the situation between GSO networks because of the time varying orbital characteristics of NGSO systems. In this paper, the interference characteristics for several types of hand-over strategies are simulated and it is shown that the results should be useful in practical coordination of inter-network interference.

  • PDF

Experimental Studies of Neural Network Control Technique for Nonlinear Systern (신경회로망을 이용한 비선형 시스팀 제어의 실험적 연구)

  • Im, Sun-Bin;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.195-195
    • /
    • 2000
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented, Neural network controller is implemented on DSP board in PC to make real time computing possible, On-line training algorithm for neural network control is proposed, As a test-bed, a large a-x table was build and interface with PC has been implemented, Experimental results under different PD controller gains show excellent position tracking for circular trajectory compared with those for PD controller only.

  • PDF

Noise Mitigation for Target Tracking in Wireless Acoustic Sensor Networks

  • Kim An, Youngwon;Yoo, Seong-Moo;An, Changhyuk;Wells, Earl
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1166-1179
    • /
    • 2013
  • In wireless sensor network (WSN) environments, environmental noises are generated by, for example, small passing animals, crickets chirping or foliage blowing and will interfere target detection if the noises are higher than the sensor threshold value. For accurate tracking by acoustic WSNs, these environmental noises should be filtered out before initiating track. This paper presents the effect of environmental noises on target tracking and proposes a new algorithm for the noise mitigation in acoustic WSNs. We find that our noise mitigation algorithm works well even for targets with sensing range shorter than the sensor separation as well as with longer sensing ranges. It is also found that noise duration at each sensor affects the performance of the algorithm. A detection algorithm is also presented to account for the Doppler effect which is an important consideration for tracking higher-speed ground targets. For tracking, we use the weighted sensor position centroid to represent the target position measurement and use the Kalman filter (KF) for tracking.

Localized evaluation of actuator tracking for real-time hybrid simulation using frequency-domain indices

  • Xu, Weijie;Guo, Tong;Chen, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.631-642
    • /
    • 2017
  • Accurate actuator tracking plays an important role in real-time hybrid simulation (RTHS) to ensure accurate and reliable experimental results. Frequency-domain evaluation index (FEI) interprets actuator tracking into amplitude and phase errors thus providing a promising tool for quantitative assessment of real-time hybrid simulation results. Previous applications of FEI successfully evaluated actuator tracking over the entire duration of the tests. In this study, FEI with moving window technique is explored to provide post-experiment localized actuator tracking assessment. Both moving window with and without overlap are investigated through computational simulations. The challenge is discussed for Fourier Transform to satisfy both time domain and frequency resolution for selected length of moving window. The required data window length for accuracy is shown to depend on the natural frequency and structural nonlinearity as well as the ground motion input for both moving windows with and without overlap. Moving window without overlap shows better computational efficiency and has potential for future online evaluation. Moving window with overlap however requires much more computational efforts and is more suitable for post-experiment evaluation. Existing RTHS data from Network Earthquake Engineering Simulation (NEES) is utilized to further demonstrate the effectiveness of the proposed approaches. It is demonstrated that with proper window size, FEI with moving window techniques enable accurate localized evaluation of actuator tracking for real-time hybrid simulation.

Real-time Multiple Pedestrians Tracking for Embedded Smart Visual Systems

  • Nguyen, Van Ngoc Nghia;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.167-177
    • /
    • 2019
  • Even though so much progresses have been achieved in Multiple Object Tracking (MOT), most of reported MOT methods are not still satisfactory for commercial embedded products like Pan-Tilt-Zoom (PTZ) camera. In this paper, we propose a real-time multiple pedestrians tracking method for embedded environments. First, we design a new light weight convolutional neural network(CNN)-based pedestrian detector, which is constructed to detect even small size pedestrians, as well. For further saving of processing time, the designed detector is applied for every other frame, and Kalman filter is employed to predict pedestrians' positions in frames where the designed CNN-based detector is not applied. The pose orientation information is incorporated to enhance object association for tracking pedestrians without further computational cost. Through experiments on Nvidia's embedded computing board, Jetson TX2, it is verified that the designed pedestrian detector detects even small size pedestrians fast and well, compared to many state-of-the-art detectors, and that the proposed tracking method can track pedestrians in real-time and show accuracy performance comparably to performances of many state-of-the-art tracking methods, which do not target for operation in embedded systems.

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

A Study on Wavelet Neural Network Based Generalized Predictive Control for Path Tracking of Mobile Robots (이동 로봇의 경로 추종을 위한 웨이블릿 신경 회로망 기반 일반형 예측 제어에 관한 연구)

  • Song, Yong-Tae;Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.457-466
    • /
    • 2005
  • In this paper, we propose a wavelet neural network(WNN) based predictive control method for path tracking of mobile robots with multi-input and multi-output. In our control method, we use a WNN as a state predictor which combines the capability of artificial neural networks in learning processes and the capability of wavelet decomposition. A WNN predictor is tuned to minimize errors between the WNN outputs and the states of mobile robot using the gradient descent rule. And control signals, linear velocity and angular velocity, are calculated to minimize the predefined cost function using errors between the reference states and the predicted states. Through a computer simulation for the tracking performance according to varied track, we demonstrate the efficiency and the feasibility of our predictive control system.

Analysis of the Routing Path Tracking Technology for Mobility Host (이동성 호스트를 위한 라우팅 경로 추적 기술 분석)

  • Park, Jin-tae;Phyo, Gyung-soo;Moon, Il-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.638-640
    • /
    • 2016
  • Recently, Humanity enter the super-connection generation that linking human and things as a result of the development ICT technologies. IoT technology is growing rapidly as a result of IoT technology appearance and development of smart device, technology expansion, the spread of smart sensors, spread diffusion of smart devices, construction of a variety of network. These techniques are applied to those having a mobility is growing importance of network technology. Real-time service and features, such as the accuracy of the data it became important. In order to implement the IoT will need to take into account IP, security, a lot of things such as a service model, but in this paper, want to discuss mobility, for the tracking technology of routing path for efficient service delivery of the host. Therefore, in this paper, the routing path that is currently study examined the tracking technology, we try to refer to routing method of the future of the mobile host.

  • PDF

Integrity Assessment and Verification Procedure of Angle-only Data for Low Earth Orbit Space Objects with Optical Wide-field PatroL-Network (OWL-Net)

  • Choi, Jin;Jo, Jung Hyun;Kim, Sooyoung;Yim, Hong-Suh;Choi, Eun-Jung;Roh, Dong-Goo;Kim, Myung-Jin;Park, Jang-Hyun;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a global optical network for Space Situational Awareness in Korea. The primary operational goal of the OWL-Net is to track Low Earth Orbit (LEO) satellites operated by Korea and to monitor the Geostationary Earth Orbit (GEO) region near the Korean peninsula. To obtain dense measurements on LEO tracking, the chopper system was adopted in the OWL-Net's back-end system. Dozens of angle-only measurements can be obtained for a single shot with the observation mode for LEO tracking. In previous work, the reduction process of the LEO tracking data was presented, along with the mechanical specification of the back-end system of the OWL-Net. In this research, we describe an integrity assessment method of time-position matching and verification of results from real observations of LEO satellites. The change rate of the angle of each streak in the shot was checked to assess the results of the matching process. The time error due to the chopper rotation motion was corrected after re-matching of time and position. The corrected measurements were compared with the simulated observation data, which were taken from the Consolidated Prediction File from the International Laser Ranging Service. The comparison results are presented in the In-track and Cross-track frame.