• Title/Summary/Keyword: Tracking network

Search Result 998, Processing Time 0.028 seconds

Precise Tracking Control of Parallel Robot using Artificial Neural Network (인공신경망을 이용한 병렬로봇의 정밀한 추적제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

A location tracking scheme using embedded-pager PCS terminals (Pager 내장형 PCS 단말기를 이용한 location tracking 기법)

  • 장경훈;심재정;박정식;김덕진
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.1-11
    • /
    • 1997
  • Since the radio spectrum is limited, future wireless system will have micro cellular architecture in order to provide multimedia traffic services on personal communicatons network. The small coverage area of micro cellular systems results in frequent hadnoffs and location updates. We focuse on network load and terminal power due to frequent location updates and propose a location tracking scheme using embedded-pager PCS terminals. The proposed scheme is expected to minimize theconsumption of PCS terminal powr and improve the receiving rate of callee because of the power saving mechanism and the embedded-pager PCS terminal. This paper proposes signaling flows among the network elements for the proposed location tracking scheme. The signaling flows are accomodated to not only the existed network architectures but alsothe ATM backbone network arcitecture. To verify the signaling flows, we used petri-Net model. The resutls show that the signaling flows are suitable to our proposed location tracking scheme.

  • PDF

Bottleneck-based Siam-CNN Algorithm for Object Tracking (객체 추적을 위한 보틀넥 기반 Siam-CNN 알고리즘)

  • Lim, Su-Chang;Kim, Jong-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2022
  • Visual Object Tracking is known as the most fundamental problem in the field of computer vision. Object tracking localize the region of target object with bounding box in the video. In this paper, a custom CNN is created to extract object feature that has strong and various information. This network was constructed as a Siamese network for use as a feature extractor. The input images are passed convolution block composed of a bottleneck layers, and features are emphasized. The feature map of the target object and the search area, extracted from the Siamese network, was input as a local proposal network. Estimate the object area using the feature map. The performance of the tracking algorithm was evaluated using the OTB2013 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.611 in Success Plot and 0.831 in Precision Plot were achieved.

Modeling of Heliostat Sun Tracking Error Using Multilayered Neural Network Trained by the Extended Kalman Filter (확장칼만필터에 의하여 학습된 다층뉴럴네트워크를 이용한 헬리오스타트 태양추적오차의 모델링)

  • Lee, Sang-Eun;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.711-719
    • /
    • 2010
  • Heliostat, as a concentrator reflecting the incident solar energy to the receiver located at the tower, is the most important system in the tower-type solar thermal power plant, since it determines the efficiency and performance of solar thermal plower plant. Thus, a good sun tracking ability as well as its good optical property are required. In this paper, we propose a method to compensate the heliostat sun tracking error. We first model the sun tracking error, which could be measured using BCS (Beam Characterization System), by multilayered neural network. Then the extended Kalman filter was employed to train the neural network. Finally the model is used to compensate the sun tracking errors. Simulated result shows that the method proposed in this paper improve the heliostat sun tracking performance dramatically. It also shows that the training of neural network by the extended Kalman filter provides faster convergence property, more accurate estimation and higher measurement noise rejection ability compared with the other training methods like gradient descent method.

Tracking performance evaluation of adaptive controller using neural networks (신경망을 이용한 적응제어기의 추적 성능 평가)

  • 최수열;박재형;박선국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1561-1564
    • /
    • 1997
  • In the study, simulation result was studied by connecting PID controller in series to the established Neural Networks Controller. Neural Network model is composed of two layers to evaluate tracking performance improvement. The reqular dynamic characteristics was also studied for the expected error to be minimized by using Widrow-Hoff delta rule. As a result of the study, We identified that tracking performance inprovement was developed more in case of connecting PID than Neural Network Contoller and that tracking plant parameter in 251 sample was approached rapidly case of time variable.

  • PDF

Target Image Exchange Model for Object Tracking Based on Siamese Network (샴 네트워크 기반 객체 추적을 위한 표적 이미지 교환 모델)

  • Park, Sung-Jun;Kim, Gyu-Min;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.389-395
    • /
    • 2021
  • In this paper, we propose a target image exchange model to improve performance of the object tracking algorithm based on a Siamese network. The object tracking algorithm based on the Siamese network tracks the object by finding the most similar part in the search image using only the target image specified in the first frame of the sequence. Since only the object of the first frame and the search image compare similarity, if tracking fails once, errors accumulate and drift in a part other than the tracked object occurs. Therefore, by designing a CNN(Convolutional Neural Network) based model, we check whether the tracking is progressing well, and the target image exchange timing is defined by using the score output from the Siamese network-based object tracking algorithm. The proposed model is evaluated the performance using the VOT-2018 dataset, and finally achieved an accuracy of 0.611 and a robustness of 22.816.

Experimental Studies on Neural Network Force Tracking Control Technique for Robot under Unknown Environment (미정보 환경 하에서 신경회로망 힘추종 로봇 제어 기술의 실험적 연구)

  • Jeong, Seul;Yim, Sun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.338-344
    • /
    • 2002
  • In this paper, neural network force tracking control is proposed. The conventional impedance function is reformulated to have direct farce tracking capability. Neural network is used to compensate for all the uncertainties such as unknown robot dynamics, unknown environment stiffness, and unknown environment position. On line training signal of farce error for neural network is formulated. A large x-y table is built as a test-bed and neural network loaming algorithm is implemented on a DSP board mounted in a PC. Experimental studies of farce tracking on unknown environment for x-y table robot are presented to confirm the performance of the proposed technique.

Position Tracking Control of a Small Autonomous Helicopter by an LQR with Neural Network Compensation

  • Eom, Il-Yong;Jung, Se-Ul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1008-1013
    • /
    • 2005
  • In this paper, position tracking control of an autonomous helicopter is presented. Velocity is controlled by using an optimal state controller LQR. A position control loop is added to form a PD controller. To minimize a position tracking error, neural network is introduced. The reference compensation technique as a neural network control structure is used, and a position tracking error of an autonomous helicopter is compensated by neural network installed in the remotely located ground station. Considering time delays between an autonomous helicopter and the ground station, simulation studies have been conducted. Simulation results show that the LQR with neural network compensation performs better than that of the LQR itself.

  • PDF

Object Tracking Algorithm using Feature Map based on Siamese Network (Siamese Network의 특징맵을 이용한 객체 추적 알고리즘)

  • Lim, Su-Chang;Park, Sung-Wook;Kim, Jong-Chan;Ryu, Chang-Su
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.6
    • /
    • pp.796-804
    • /
    • 2021
  • In computer vision, visual tracking method addresses the problem of localizing an specific object in video sequence according to the bounding box. In this paper, we propose a tracking method by introducing the feature correlation comparison into the siamese network to increase its matching identification. We propose a way to compute location of object to improve matching performance by a correlation operation, which locates parts for solving the searching problem. The higher layer in the network can extract a lot of object information. The lower layer has many location information. To reduce error rate of the object center point, we built a siamese network that extracts the distribution and location information of target objects. As a result of the experiment, the average center error rate was less than 25%.

Object Tracking with Histogram weighted Centroid augmented Siamese Region Proposal Network

  • Budiman, Sutanto Edward;Lee, Sukho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.156-165
    • /
    • 2021
  • In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.