• Title/Summary/Keyword: Tracking Algorithm

Search Result 2,935, Processing Time 0.037 seconds

A Study on the Automatic Detection of Railroad Power Lines Using LiDAR Data and RANSAC Algorithm (LiDAR 데이터와 RANSAC 알고리즘을 이용한 철도 전력선 자동탐지에 관한 연구)

  • Jeon, Wang Gyu;Choi, Byoung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.331-339
    • /
    • 2013
  • LiDAR has been one of the widely used and important technologies for 3D modeling of ground surface and objects because of its ability to provide dense and accurate range measurement. The objective of this research is to develop a method for automatic detection and modeling of railroad power lines using high density LiDAR data and RANSAC algorithms. For detecting railroad power lines, multi-echoes properties of laser data and shape knowledge of railroad power lines were employed. Cuboid analysis for detecting seed line segments, tracking lines, connecting and labeling are the main processes. For modeling railroad power lines, iterative RANSAC and least square adjustment were carried out to estimate the lines parameters. The validation of the result is very challenging due to the difficulties in determining the actual references on the ground surface. Standard deviations of 8cm and 5cm for x-y and z coordinates, respectively are satisfactory outcomes. In case of completeness, the result of visual inspection shows that all the lines are detected and modeled well as compare with the original point clouds. The overall processes are fully automated and the methods manage any state of railroad wires efficiently.

Performance Analysis of Interference Cancellation Algorithms for an FM Based PCL System (FM 신호 기반 PCL 시스템에서 간섭 신호 제거 알고리즘의 성능 분석)

  • Park, Geun-Ho;Kim, Dong-Gyu;Kim, Ho Jae;Park, Jin-Oh;Lee, Won-Jin;Ko, Jae Heon;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.819-830
    • /
    • 2017
  • An FM radio based PCL system is a passive radar technique for detecting the multiple moving targets from FM radio signals and tracking the trajectories of the targets by calculating the cross-correlation function of direct-path signal and target echo signals. However, the interference signals are received from a surveillance channel, which is designed to receive the target echo signals. Because of this problem, the target echo signals are masked by the strong interference signals and this makes it difficult to detect the true targets from the cross-correlation function. Adaptive filters are known as effective methods for suppressing the interference signals but there is a problem to present their accurate performances in the PCL system because many literatures used the cross-correlation function and the ratio of input and output power as a measure of the performance analysis. In this paper, a performance analysis method is proposed to evaluate the performance of interference cancellation algorithms. By using the property that each component of the filter weight vector is adjusted to suppress the specific interference signal, a performance measure of the interference signal suppression is defined by a function of adaptive filter weights. Based on the proposed method, we compare the performance of the adaptive filters used in the PCL system. Simulation results show that the proposed method can be very effective for evaluating the performance of interference cancellation algorithms.

An Embedded FAST Hardware Accelerator for Image Feature Detection (영상 특징 추출을 위한 내장형 FAST 하드웨어 가속기)

  • Kim, Taek-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • Various feature extraction algorithms are widely applied to real-time image processing applications for extracting significant features from images. Feature extraction algorithms are mostly combined with image processing algorithms mostly for image tracking and recognition. Feature extraction function is used to supply feature information to the other image processing algorithms and it is mainly implemented in a preprocessing stage. Nowadays, image processing applications are faced with embedded system implementation for a real-time processing. In order to satisfy this requirement, it is necessary to reduce execution time so as to improve the performance. Reducing the time for executing a feature extraction function dose not only extend the execution time for the other image processing algorithms, but it also helps satisfy a real-time requirement. This paper explains FAST (Feature from Accelerated Segment Test algorithm) of E. Rosten and presents FPGA-based embedded hardware accelerator architecture. The proposed acceleration scheme can be implemented by using approximately 2,217 Flip Flops, 5,034 LUTs, 2,833 Slices, and 18 Block RAMs in the Xilinx Vertex IV FPGA. In the Modelsim - based simulation result, the proposed hardware accelerator takes 3.06 ms to extract 954 features from a image with $640{\times}480$ pixels and this result shows the cost effectiveness of the propose scheme.

An Enhanced Frequency Synchronization Algorithm for 3GPP LTE FDD/TDD Dual Mode Downlink Receiver (3GPP LTE FDD/TDD 듀얼 모드 하향 링크 수신기를 위한 개선된 주파수 동기 알고리즘)

  • Shim, Myung-Jun;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.103-112
    • /
    • 2010
  • In this paper, we propose a coarse and fine frequency synchronization method which is suitable for the 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution) FDD(Frequency Division Duplexing) / TDD(Time Division Duplexing) dual mode system. In general, PSS(Primary Synchronization Signal) correlation based estimation method and CP(Cyclic Prefix) correlation based tracking loop are applied for coarse and fine frequency synchronization in 3GPP LTE OFDMA(Orthogonal Frequency Division Multiple Access) system, respectively. However, the conventional coarse frequency synchronization method has performance degradation caused by fading channel and squaring loss. Also, the conventional fine frequency synchronization method cannot guarantee stable operation in TDD mode because of signal power difference between uplink and downlink subframe. Therefore, in this paper, we propose enhanced coarse and fine frequency synchronization methods which can estimate more accurately in multi-path fading channel and high speed channel environments and has stable operation for TDD frame structure, respectively. By computer simulation, we show that the proposed methods outperform the conventional methods, and verify that the proposed frequency synchronization method can guarantee stable operation in 3GPP LTE FDD/TDD dual mode downlink receiver.

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

A study on the design of an efficient hardware and software mixed-mode image processing system for detecting patient movement (환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구)

  • Seungmin Jung;Euisung Jung;Myeonghwan Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • In this paper, we propose an efficient image processing system to detect and track the movement of specific objects such as patients. The proposed system extracts the outline area of an object from a binarized difference image by applying a thinning algorithm that enables more precise detection compared to previous algorithms and is advantageous for mixed-mode design. The binarization and thinning steps, which require a lot of computation, are designed based on RTL (Register Transfer Level) and replaced with optimized hardware blocks through logic circuit synthesis. The designed binarization and thinning block was synthesized into a logic circuit using the standard 180n CMOS library and its operation was verified through simulation. To compare software-based performance, performance analysis of binary and thinning operations was also performed by applying sample images with 640 × 360 resolution in a 32-bit FPGA embedded system environment. As a result of verification, it was confirmed that the mixed-mode design can improve the processing speed by 93.8% in the binary and thinning stages compared to the previous software-only processing speed. The proposed mixed-mode system for object recognition is expected to be able to efficiently monitor patient movements even in an edge computing environment where artificial intelligence networks are not applied.

A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm (기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Yim, Min-Jin;Lee, Kyu-Beom;Oh, Young-Sup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • In this study, a preliminary study was undertaken for development of a tunnel incident automatic detection system based on a machine learning algorithm which is to detect a number of incidents taking place in tunnel in real time and also to be able to identify the type of incident. Two road sites where CCTVs are operating have been selected and a part of CCTV images are treated to produce sets of training data. The data sets are composed of position and time information of moving objects on CCTV screen which are extracted by initially detecting and tracking of incoming objects into CCTV screen by using a conventional image processing technique available in this study. And the data sets are matched with 6 categories of events such as lane change, stoping, etc which are also involved in the training data sets. The training data are learnt by a resilience neural network where two hidden layers are applied and 9 architectural models are set up for parametric studies, from which the architectural model, 300(first hidden layer)-150(second hidden layer) is found to be optimum in highest accuracy with respect to training data as well as testing data not used for training. From this study, it was shown that the highly variable and complex traffic and incident features could be well identified without any definition of feature regulation by using a concept of machine learning. In addition, detection capability and accuracy of the machine learning based system will be automatically enhanced as much as big data of CCTV images in tunnel becomes rich.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.