• Title/Summary/Keyword: Trackball

Search Result 7, Processing Time 0.021 seconds

Evaluating the performance of direct manipulation input devices (직접조작방식 입력장치의 성능비교)

  • 박재희;이남식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.103-109
    • /
    • 1992
  • Direct manipulations are composed of pointing operations and dragging operations. In order to find the optimum design parameters (such as C/D ratio, moving direction) for the direct manipulation of a GUI(Graphical User Interface), an ergonomic experiment was devised (2*4*3*8 design) to measure the performance of a mouse (Microsoft) and a trackball (Logitech). The results showed that the mouse was more suitable for the direct manipulation (expecially for the dragging operation) than the trackball, and the suitable C/D ratio was 10 (for the mouse) and 16 (for the trackball). Also the movement direction was a determinant factor in trackball performance.

  • PDF

Comparison of Muscle Activity and Input Performance of Operators Using a Computer Mouse and a Trackball

  • Yoo, Hwan-Suk;Yi, Chung-Hwi;Kwon, Ho-Yun;Jeon, Hye-Seon;Yoo, Won-Gyu
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.37-43
    • /
    • 2009
  • This study compared the electromyographic activities and input performance of computer operators using a computer mouse and a trackball. Muscle activities were assessed at the upper trapezius (UT), middle deltoid (MD), extensor digitorum (ED), and first dorsal interosseous muscle (FDI). Twenty-six healthy subjects were recruited, and the test order was selected randomly for each subject. The task set was to click moving targets on a Windows program. The EMG amplitude was normalized using the percentage of reference voluntary contraction for UT and MD and the percentage of maximal voluntary contraction for ED and FDI. To analyze the differences in EMG activity, a paired t-test was used. UT muscle activities were significantly greater when the computer mouse was used (p<.05). FDI muscle activities were significantly greater when the trackball was used (p<.05). Using a trackball can reduce the load on the UT during computer work and help to prevent and manage work-related musculoskeletal disorders.

  • PDF

"Least Gain or Wrist Pain": A comparative study about performance and usability of mouse, trackball, and touchpad

  • Yunsun Alice Hong;Kwanghee Han
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.298-309
    • /
    • 2023
  • The mouse as an input device has undoubtedly brought convenience to users due to its intuitiveness and simplicity, but it also brought unprecedented issues such as carpal tunnel syndrome (CTS). As a result, the necessity of alternative input devices that put less strain on the wrist, while still providing the convenience of a conventional mouse, has emerged. Unfortunately, there have been several research about alternative devices to replace a mouse, however, they showed inconsistent results. This study suggests that those inconsistent results may stem from the type and the difficulty of tasks used in previous studies. Therefore, we designed this study to compare the performance and perceived workload of three input devices (Mouse/Trackball/Touchpad) in each condition in terms of task type (Targeting/Tracking) and difficulty level (Easy/Hard). The results indicated that there were significant performance differences and no significant workload differences among the three devices, and the interactions were observed in some conditions. These results can provide users with practical guidelines to choose the optimal input device according to their needs or purpose.

Design and Implementation of Trackball Based UI for Efficient Text Entry on Smartwatch (스마트워치에서의 효율적인 문자입력을 위한 트랙볼 센서 기반 UI 설계 및 구현)

  • Lee, Ji-eun;Ahn, Jung-eun;Park, Kyeongsoo;Choi, Go-eun;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.452-457
    • /
    • 2015
  • Recently, wearable devices have gained popularity with familiar form factors and designs of eye-wear and watch to satisfy wearers' various preferences. Since UI/UX of smartphones can not be applied directly on smaller wearable devices, text entry on wearable devices is still problematic. In this paper, we first identify UI/UX problems of existing input methods and propose a new input method for wearable devices specifically targeting smartwatch platforms. We design and implement an efficient text entry method for wearable devices using trackball sensor and evaluate its performance and usability.

Design of Ball-based Mobile Haptic Interface (볼 기반의 모바일 햅틱 인터페이스 디자인)

  • Choi, Min-Woo;Kim, Joung-Hyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.122-128
    • /
    • 2009
  • In this paper, we present a design and an evaluation of a hand-held ball based haptic interface, named "TouchBall." Using a trackball mechanism, the device provides flexibility in terms of directional degrees of freedom. It also has an advantage of a direct transfer of force feedback through frictional touch (with high sensitivity), thus requiring only relatively small amount of inertia. This leads to a compact hand-held design appropriate for mobile and 3D interactive applications. The device is evaluated for the detection thresholds for directions of the force feedback and the perceived amount of directional force. The refined directionality information should combine with other modalities with less sensory conflict, enriching the user experience for a given application.

  • PDF

Multiple Dimension User Motion Detection System base on Wireless Sensors (무선센서 기반 다차원 사용자 움직임 탐지 시스템)

  • Kim, Jeong-Rae;Jeong, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.700-712
    • /
    • 2011
  • Due to recently advanced electrical devices, human can access computer network regardless of working location or time restriction. However, currently widely used mouse, joystick, and trackball input system are not easy to carry and they bound user hands exclusively within working space. Those make user inconvenient in Ubiquitous environments.. In this paper, we propose multiple dimension human motion detection system based on wireless sensor networks. It is a portable input device and provides easy installation process and unbinds user hands during input processing stages. Our implemented system is comprised of three components. One is input unit that senses user motions and transmits collected data to receiver. Second is receiver that conveys the received data to application, which runs on server computer. Third is application that performs command operations according to received data. Experiments shows that proposed system accurately detect the characteristics of user arm motions and fully support corresponding input requests.

Usability Comparative Testing of Pointing Input Devices on a Small-Sized Mobile Computing Device - Focused on Trackpoint and Touchpad - (이동형 컴퓨팅 기기에서의 포인팅 입력 장치의 사용성 비교연구 - 트랙포인터와 터치패드를 중심으로 -)

  • Jeong, Seong-Won;Lee, Kun-Pyo
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.175-184
    • /
    • 2005
  • PDA(Personal Digital Assistants) and laptop computer that are small sized mobile implements are typical devices which capable of using wireless internet. They seem to have a tendency to possess multi-function as well as to miniaturize in accordance with taking advantage of today's digital convergence circumstance. It should be considered that the pointing input device of these mobile computer that have PDA size and laptop's performance has to be added to something very small instead of 4-button, 5-button navigator and with the electric pen. The basic framework for this study is to investigate the usability of the two input devices Trackpoint and Touchpad which regarded as a alternative pointing device for small sized mobile computer. 14 novice subjects compared a Trackpoint to a Touchpad across five curser-control tasks. The study found that subjects executed not more slowly with a Trackpoint input device than with the Touchpad. Observation shows that learning for Trackpoint appears to have had more than for the Touchpad. Subjects expressed preference for the Trackpoint in general work.

  • PDF