• Title/Summary/Keyword: Track-keeping control

Search Result 39, Processing Time 0.023 seconds

Improved Adaptive Neural Network Autopilot for Track-keeping Control of Ships: Design and Simulation

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.30 no.4
    • /
    • pp.259-265
    • /
    • 2006
  • This paper presents an improved adaptive neural network autopilot based on our previous study for track-keeping control of ships. The proposed optimal neural network controller can automatically adapt its learning rate and number of iterations. Firstly, the track-keeping control system of ships is described For the track-keeping control task, a way-point based guidance system is applied To improve the track-keeping ability, the off-track distance caused by external disturbances is considered in learning process of neural network controller. The simulations of track-keeping performance are presented under the influence of sea current and wind as well as measurement noise. The toolbox for track-keeping simulation on Mercator chart is also introduced.

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part II: Simulation Study)

  • Nguyen Phung-Hung;Jung Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • In Part I(theoretical study) of the paper, a new adaptive autopilot for ships based on Adaptive Neural Networks was proposed. The ANNAI autopilot was designed for course-keeping, turning and track-keeping control for ships. In this part of the paper, to show the effectiveness and feasibility of the ANNAI autopilot and automatic selection algorithm for learning rate and number of iterations, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented. Additionally, the results of the previous studies using Adaptive Neural Network by backpropagation algorithm are also showed for comparison.

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part I: Theoretical study)

  • NGUYEN Phung-Hung;JUNG Yun-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.17-22
    • /
    • 2005
  • This paper presents a new adaptive autopilot for ships based on the Adaptive Neural Networks. The proposed adaptive autopilot is designed with some modifications and improvements from the previous studies on Adaptive Neural Networks by Adaptive Interaction (ANNAI) theory to perform course-keeping, turning and track-keeping control. A strategy for automatic selection c! the neural network controller parameters is introduced to improve the adaptation ability and the robustness of new ANNAI autopilot. In Part II of the paper, to show the effectiveness and feasibility of the proposed ANNAI autopilot, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented.

  • PDF

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part II: Simulation study)

  • NGUYEN Phung-Hung;JUNG Yun-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.23-28
    • /
    • 2005
  • In Part I (theoretical study) of the paper, a new adaptive autopilot for ships based on Adaptive Neural Networks was proposed. The ANNAI autopilot was designed for course-keeping, turning and track-keeping control for ships. In this part of the paper, to show the effectiveness and feasibility of the ANNAI autopilot, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented. Additionally, the results of the previous studies using Adaptive Neural Network by backpropagation algorithm are also showed for comparison.

  • PDF

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part I: Theoretical Study)

  • Nguyen Phung-Hung;Jung Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.29 no.9
    • /
    • pp.771-776
    • /
    • 2005
  • This paper presents a new adaptive autopilot for ships based on the Adaptive Neural Networks. The proposed adaptive autopilot is designed with some modifications and improvements from the previous studies on Adaptive Neural Networks by Adaptive Interaction (ANNAI) theory to perform course-keeping, turning and track-keeping control. A strategy for automatic selection of the neural network controller parameters is introduced to improve the adaptation ability and the robustness of new ANNAI autopilot. In Part II of the paper, to show the effectiveness and feasibility of the proposed ANNAI autopilot, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances will be presented.

A Study on the Automatic Route Tracking Control of Ships (선박 자동 항로추종 제어알고리즘에 관한 연구)

  • 정경열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.920-927
    • /
    • 1998
  • This paper presents a synthetic control algorithm that generates the rudder command angle to track the optimal route which is composed of straight-lines among way-points with keeping a required error limit. The control algorithm comprises three main lgorithms that is a course-keeping algorithm that eliminates the yaw angle difference between optimal route and current route a track-keeping algorithm that tracks the optimal route among way-points and a turning-control algorithm that includes the generation of optimal turning routes and control method. The effectiveness of the proposed control algorithm is assured through computer simulation.

  • PDF

A Study on Ship's Automatic Track-keeping Control considering disturbance effect (외란을 고려한 선박 자동 침로 제어 수치 시뮬레이션 연구)

  • Le, Thanh-Dat;Im, Nam-Kyun;Lee, Sang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.17-20
    • /
    • 2013
  • Many researches have been conducted in the field of constructing controllers for ships over 20 years. But still, ship automatic track-keeping controllers has not been designed for ship's automatic berthing as they considered nearly constant ship's speed. This study dealt with this problem to design track-keeping control on ship's model of SAE NURI using nonlinear mathematical expression. By using this control, the ship is auto track-kept in fare-way at reducing speed to anchorage place. The simulation results proved that this control can be adapted in ship's auto berthing in near future.

  • PDF

Experiment on Track-keeping Performance using Free Running Model Ship (모형 선박을 이용한 선박 침로유지 실험 연구)

  • Im, Nam-Kyun;Tran, Van-Luong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.221-226
    • /
    • 2012
  • This research presents an analysis of algorithm for ship track-keeping along a given trajectory. The maneuver of a free running model ship guiding through a simple path are presented. In order to solve the above problem, a desired trajectory is usually determined by GPS points in a pre-fixed place then these points are set in a pre-programmed navigation so that the ship would be automatically tracked. Proportional-Derivative(PD) control which is useful for fast response controllers was used in this program as a course keeping system. A high accuracy GPS receiver was installed on the model ship that could provide positions frequently, the system will compare and give out the remaining distance and heading to the target way-point. The results of ship auto track-keeping experiment will be explained in order to illustrate the adjustment in controlling parameters. These results can be utilized as a preliminary step to carry out the experiment of ship collision avoidance system and automatic berthing in the future.

Route Analysis Algorithm using Fuzzy Reasoning in Route Planning (항로 계획시의 퍼지 항로분석 알고리즘)

  • 구자윤
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.3
    • /
    • pp.65-71
    • /
    • 1996
  • Recently, the Track Control System which was separated from the Course Control System so-called Auto-Pilot has been developed for track-keeping in coastal area. From this year, the NAV Sub-committee in IMO commenced to consider the Performance Standard for the Track Control System vigorously. This system will be integrated with ECDIS and IBS so that captain/officers should analysis ship's motion characteristics accurately in the route planning using the electronic nautical charts. In this paper, a new Route Analysis Algorithm using fuzzy reasoning in route planning was proposed for 2, 700 TEU container ship. In order to verify the track-keeping, the author established a ship mathematical model and executed the simulation of the Route Analysis Algorithm at on-line condition with Pentium PC. The results of ship trajectories of the Route Analysis Algorithm were found to be effective to get track control automatically.

  • PDF

Collision Avoiding Navigation of Marine Vehicles Using Fuzzy Logic

  • Joh, Joong-seon;Kwon, Kyung-Yup;Lee, Sang--Min
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.100-108
    • /
    • 2002
  • A fuzzy logic for collision avoiding navigation of marine vehicles is proposed in this paper. VFF(Virtual Force Field) method, which is used widely in the field of mobile robots, is modifiel to apply to marine vehicles. The method is named MVFF (Modified Virtual Force Field) mothod. The MVFF consists of the determination of the heading angles far track-keeping mode ($\psi_{ca}$)and collision avoidance mode ($\psi_{ca}$). The operator can choose the pattern of the track-keeping mode in the proposed algorithm. The collision avoidance algorithm can handle static and/or moving obstacles. These functons are implemented using fuzzy logic. Various simulation results verify the proposed alogorithm.