• Title/Summary/Keyword: Track error

Search Result 405, Processing Time 0.032 seconds

Study on Design of Rail Level Crossing System for Preventing from Non-Alarming Status Caused by Track Shunting Sensibility Errors (레일 단락감도 불량으로 발생하는 무경보 예방을 위한 건널목보안장치 설계)

  • Jang, Dong-Wan;Jeon, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.160-166
    • /
    • 2010
  • Railroad level crossing systems are used to prevent train from collisions by informing pedestrians and vehicles of approaching trains on the level crossing. The current detection systems mostly use track-based electrical circuits to detect approaching trains. The making and breaking of the circuit when the train wheel passes along the track sends a signal to barriers that restrict access to the track. Unfortunately, this track-based signal system is vulnerable to malfunctions in certain situations. If the rail becomes rusted due to moisture, weather conditions, or infrequent use, the electrical circuit detection system could fail. Such a failure could lead to a train-vehicle or train-pedestrian collision. This paper suggests a replacement of the electrical circuit-based system with an infrared detection system. The research shows that an infrared detection system improves safety by reducing the frequency of detection failure of the alarming circuit to system.

우리나라 의용생체공학의 현황과 전망

  • 이충웅
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 1989
  • This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively.

  • PDF

Two axis control characteristics of linear motor feed system (리니어모터 이송시스템의 2축제어특성에 관한 연구)

  • 유송민;신관수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.405-410
    • /
    • 2002
  • Linear motor food system control algorithm was extended to the two axis system. Among several factors considered, overshoot of the response was the most important one in minimizing position tracking error. Balance between overshoot and settling time has to be adjusted to guarantee to best tracking performance. Tracking route was carefully executed to eliminate the possible error during the machining process. Even though there exists slight discrepancy between desired mute and cutting track at the corner, precision machining could be implemented using the cutting scheme introduced.

  • PDF

Analysis of DGPS Approach and Landing Accuracy using Air Base Precision Approach Radar (비행기지 PAR을 이용한 DGPS 공항 접근 및 착륙 정확도 분석)

  • Koo, Jung;Pyo, Sang-Ho;Kang, Kyeong-Sung;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.788-797
    • /
    • 2011
  • This paper analyzes the accuracy on the approach and landing of aircraft to an airport through comparison with airbase Precision Approach Radar and aircraft track data of DGPS equipped in aircraft. The proposed analysis result could be a basis for verifying the possibility that DGPS can be utilized in Airbase precision approach and landing. Position identification capability of widely used commercial DGPS is fairly accurate on latitude and longitude, while there is a slight error for being used in an airbase accurate approach and landing of Category I precision when it comes to altitude. Thus, we tested accuracy by analyzing actual flight track data of high performance aircraft to verify the accuracy of the airbase approach and landing using DGPS. Through the research, we developed instrumentation to compare PAR track data with DGPS track data, which can be used in reducing the number of PAR verification Flight utilizing it as a system measuring PAR accuracy at PAR installation phase.

An Automotive Radar Target Tracking System Design using ${\alpha}{\beta}$ Filter and NNPDA Algorithm (${\alpha}{\beta}$ 필터 및 NNPDA 알고리즘을 이용한 차량용 레이더 표적 추적 시스템 설계)

  • Bae, JunHyung;Hyun, EuGin;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • Automotive Radar Systems are currently under development for various applications to increase accuracy and reliability. The target tracking is most important in single or multiple target environments for accuracy. The tracking algorithm provides smoothed and predicted data for target position and velocity(Doppler). To this end, the fixed gain filter(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter) and dynamic filter(Kalman filter, Singer-Kalman filter, etc) are commonly used. Gating is used to decide whether an observation is assigned to an existing track or new track. Gating algorithms are normally based on computing a statistical error distance between an observation and prediction. The data association takes the observation-to-track pairings that satisfied gating and determines which observation-to-track assignment will actually be made. For data association, NNPDA(Nearest Neighbor Probabilistic Data Association) algorithm is proposed. In this paper, we designed a target tracking system developed for an Automotive Radar System. We show the experimental results of the 77GHz FMCW radar sensor on the roads. Four tracking algorithms(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter, 2nd order Kalman filter, Singer-Kalman filter) have been compared and analyzed to evaluate the performance in test scenario.

Global Navigation Satellite System(GNSS)-Based Near-Realtime Analysis of Typhoon Track for Maritime Safety (해상안전을 위한 GNSS 기반 태풍경로 실시간 분석)

  • LEE, Jae-Kang;HA, Ji-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.93-102
    • /
    • 2019
  • In this study, in order to analyze the possibility of observing a typhoon track based on the Global Navigation Satellite System(GNSS), Typhoon NARI, the 11th typhoon of 2007, was analyzed in terms of the typhoon track as well as the local variation of perceptible water over time. The perceptible water was estimated using data obtained from observatories located on the typhoon track from Jeju to the southern coast of Korea for a total of 18 days from September 7(DOY 250) to September 24(DOY 267), 2007, including the period when the observatories were affected by the typhoon at full-scale, as well as one previous week and one following week. The results show that the trend of the variation of perceptible water was similar between the observatories near the typhoon track. Variation of perceptible water over time depending on the development and landing of the typhoon was distinctively observed. Several hours after the daily maximum of perceptible water was found at the JEJU Observatory, the first struck by the typhoon on the typhoon track, the maximum value was found at other observatories located on the southern coast. In the observation period, the time point at which the maximum perceptible water was recorded in each location was almost the same as the time point at which the typhoon landed at the location. To analyze the accuracy of the GNSS-based perceptible water measurement, the data were compared with radiosonde-based perceptible water data. The mean error was 0.0cm, and the root mean square error and the standard deviation were both 0.3cm, indicating that the GNSS-based perceptible water data were highly accurate and precise. The results of the this study show that the GNSS-based perceptible water data may be used as highly accurate information for the analysis of typhoon tracks over time.

Odometry error correction by Gyro sensor for mobile robot localization (이동로봇의 Localization을 위한 Gryo sensor에 의한 Odometry Error 보정에 관한 연구)

  • Park, Shi-Na;Ro, Young-Shick;Choi, Won-Tai;Hong, Hyun-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.597-599
    • /
    • 2005
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

  • PDF

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

A Comparative Analysis of Path Planning and Tracking Performance According to the Consideration of Vehicle's Constraints in Automated Parking Situations (자율주차 상황에서 차량 구속 조건 고려에 따른 경로 계획 및 추종 성능의 비교 분석)

  • Kim, Minsoo;Ahn, Joonwoo;Kim, Minsung;Shin, Minyong;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.250-259
    • /
    • 2021
  • Path planning is one of the important technologies for automated parking. It requires to plan a collision-free path considering the vehicle's kinematic constraints such as minimum turning radius or steering velocity. In a complex parking lot, Rapidly-exploring Random Tree* (RRT*) can be used for planning a parking path, and Reeds-Shepp or Hybrid Curvature can be applied as a tree-extension method to consider the vehicle's constraints. In this case, each of these methods may affect the computation time of planning the parking path, path-tracking error, and parking success rate. Therefore, in this study, we conduct comparative analysis of two tree-extension functions: Reeds-Shepp (RS) and Hybrid Curvature (HC), and show that HC is a more appropriate tree-extension function for parking path planning. The differences between the two functions are introduced, and their performances are compared by applying them with RRT*. They are tested at various parking scenarios in simulation, and their advantages and disadvantages are discussed by computation time, cross-track error while tracking the path, parking success rate, and alignment error at the target parking spot. These results show that HC generates the parking path that an autonomous vehicle can track without collisions and HC allows the vehicle to park with lower alignment error than those of RS.