• Title/Summary/Keyword: Track analysis

Search Result 1,815, Processing Time 0.036 seconds

Evaluation of Dynamic Stability of KHSR Bridges Using Train/Track/Bridge Interaction Analysis Method (차량/궤도/교량 상호작용 해석법을 이용한 한국고속철도 교량의 동적안전성 평가)

  • 김만철;나성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1015-1021
    • /
    • 2001
  • This paper represents the results carried out to determine the dynamic response characteristics of Korea High Speed Rail(KHSR) bridges. The responses of the KHSR bridges subjected to the moving train loading are obtained through the simplified method for the 2-dimensional train/track/bridge interaction analysis in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. The results of the analyses are compared with the field test data to verify the performance of the 2-dimensional train/track/bridge interaction analysis method.

  • PDF

Performance Evaluation of KHSR Bridges Using 2-D Train/Track/Bridge Interaction Analysis Method (2차원 상호작용 해석법을 이용한 한국고속철도 교량의 성능평가)

  • 김만철;심성택;이희연
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.366-373
    • /
    • 2000
  • This paper represents the results carried out to determine the dynamic response characteristics of Korea High Speed Rail(KHSR) bridges. The responses of the KHSR bridges subjected to the moving train loading are obtained through the simplified method for the 2-dimensional train/track/bridge interaction analysis in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. The results of the analyses are compared with the field test data to verify the performance of the 2-dimensional train/track/bridge interaction analysis method.

  • PDF

Field Reliability Analysis of S-Bond of AF Track Circuit for Automatic Train Control System (자동열차제어장치 AF궤도회로 S-BOND의 사용신뢰도 분석)

  • Choi, Kyu-Hyoung;Rho, Young-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.308-313
    • /
    • 2009
  • This paper presents a reliability analysis of S-bonds for AF track circuits, which detect train movement and transmit a speed control signal to the train. Field survey shows that S-bonds are exposed to very large vibrations transferred from rail, and suffer from frequent failures when they were installed on ballasted track. We collected the time-to-failure data of S-bonds from the maintenance field of Seoul metro line 2, and made a parametric approach to estimate the statistical distribution that fits the time-to-failure data. The analysis shows that S-bonds have time-to-failure characteristics described by Weibull distribution. The estimated shape parameter of Weibull distribution is 1.1, which means the distribution has constant failure rate characteristics like exponential distribution. The reliability function, hazard function, percentiles and mean lifetime are derived for maintenance support.

Prediction of The Rail way Track's Vibration Behavior and Corresponding Experimental Verification (철도궤도의 동적특성 예측 및 실험적 검증 연구)

  • Park, Hee-Jun;Kim, Kwan-Ju;Kim, Jea-Chul;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.883-888
    • /
    • 2004
  • One of commercial rapid transits produces peculiar booming sound when passing through the slab-track tunnel. In order to analyze that tympanic membrane-pressing noise systematically, typical source-transfer path-response analysis was carried out. Considering the octave band of booming noise, work scope was confined to structure-borne noise analysis, especially the dynamic behaviour of railway tracks. Experimental modal analysis of railway tracks, composed of rail, rubber pad, sleeper, ballast, and ground were performed. The results shows that transversal bending modes of the rail are suspicious for the cause of the low band booming noise. Finite element analysis are made use of to match preceding experimental results, and plausible dynamic properties of track components are produced.

  • PDF

Analysis on the Vibration Characteristics of High Speed Train according to Track Structure (궤도구조에 따른 고속철도차량의 진동특성 분석)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.593-599
    • /
    • 2012
  • To analyze the effect of the track structure on the running performance of the railway vehicle, we studied on the vibration and ride characteristics of the high speed train. As results, vibration and ride level of high speed train on the concrete bed track is more reduced than on the ballast bed track. Peak-peak value of carbody vibration on the concrete bed track at 300km/h is half of the peak-peak value of carbody vibration on the ballast bed track. Ride level on the concrete bed track at 300km/h is same level as that on the ballast bed track at 250km/h. Thus, Vibration and ride performance of the high speed train on the concrete bed track is greatly improved compared with that on the ballast bed track.

The Analysis of the Change Process of Fisheries Track's High School Curriculum: Focusing on the 5th-7th Revised National Curriculum (수산계열 고등학교 교육과정의 변천과정 분석 - 제5차에서 제7차 교육과정을 중심으로 -)

  • Park, Chang-Un;Ju, Dong-Beom
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.1
    • /
    • pp.25-37
    • /
    • 2010
  • This study was attempted to analyze the change process of fisheries track's high school curriculum related with the 5th-7th revised national curriculum. To accomplish this goal, the nature and goals of fisheries track's high school were reviewed. First, it was found that the fisheries track's high school was classified into three groups; high school for special goal, characterization, and industry. And the goal of fisheries track's high school was designated to harmonize the general education and vocational education in high school goal. Second, the legal basis and system of national curriculum in fisheries track's high school were discussed. The legal basis of national curriculum in fisheries track's high school was prescribed to the 'Elementary and Secondary Education Act'. The system of national curriculum was composed the general guideline and subjects. Third, the change process of fisheries track's high school national curriculum was discussed. The system of decision, general guideline, and subjects in fisheries track's high school national curriculum were seemingly to be studied on the basis of the autonomy or diversity. In conclusion, the concrete content of fisheries track's high school national curriculum was not changed compared to the 5th-7th revised curriculum.

A Guideline for Development of Track-Bridge Structural System with Sliding Layer to Reduce the Track-Bridge Interaction (궤도-교량 상호작용 저감을 위한 슬라이드 층이 고려된 궤도-교량 구조시스템의 개발 방향)

  • Yun, Kyung-Min;Choi, Shin-Hyung;Song, Dae-Seok;Lee, Kyung-Chan;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1469-1476
    • /
    • 2015
  • The bridges take a significant part of entire route in Korea railway, because 70% of Korean territory is covered with mountains. For this reason, span enlargement of railway bridges is more advantageous to increase economic efficiency on the bridge design. However there are many limitations such as additional axial force of the rail, excessive displacement due to track-bridge interaction. In this study, track-bridge interaction analysis was conducted considering the sliding layer which was installed between the track and girder. From the numerical analysis results, the behavior of track-bridge interaction was investigated according to the installation method of sliding layer. Finally, a guideline for development of track-bridge structure system to reduce the track-bridge interaction was proposed.

Analysis of Allowable Settlement on Tracks of High Speed Railway (고속철도 궤도 종류에 따른 허용침하량 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom;Seol, Hoon-Il;Han, Young-Ah
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.25-34
    • /
    • 2008
  • An application of concrete track is being actively processed for the construction of Korean high speed railway. The concrete track has an advantage in decreasing the maintenance cost, whereas it has much difficulty controlling the long term settlement after settlement occurred. Therefore, the management and control of settlement are very important for the successful construction of concrete track. The purpose of this paper is to verify the allowable settlement between concrete track and ballast track, and piled raft foundation installation effects as settlement reducers for concrete track. Therefore, a series of 3D finite element analyses that take into account the allowable settlement were performed for major parameters such as soil condition, pile installation and loading type. Based on the analysis, it is shown that concrete track causes much smaller settlement than ballast track, and the effect of installation is necessary to effectively reduce the settlement of concrete track.

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

Analysis of the Influence of Track Alignment on Ride Comfort and Safety of KTX (방향틀림이 KTX 주행거동에 미치는 영향 분석)

  • Choi, Il-Yoon;Um, Ju-Hwan;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.110-116
    • /
    • 2013
  • Track irregularities is one of the key factors influencing the running behavior of trains. In order to ensure safety and ride comfort of train, the criteria for track irregularities should be adequately established regarding vehicle velocity, vehicle characteristics, characteristics of the track recording car, and measurement interval. Also, track maintenance should be carried out thoroughly according to the criteria for managing track irregularities. Numerical analysis was conducted to investigate the influence of track alignment on the running behavior of Korean high speed train(KTX). Various wavelengths and amplitudes of lateral alignment were considered as parameters for this study using the Vampire program, a vehicle dynamics modeling package in railway environment. Derailment, lateral load, bogie acceleration and body acceleration of numerical analysis results due to alignment were investigated. Finally, the influence of the alignment on safety and ride comfort for the KTX was evaluated. This study indicates that alignment irregularities have significant impacts on running safety, and that the criteria used to manage alignment irregularities should be restrictive to ensure the running safety of the KTX.