• Title/Summary/Keyword: Track Settlement

Search Result 138, Processing Time 0.031 seconds

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.

Evaluation of settlement behavior of ballasted layer mixed with specially shaped artificial ballasts under train loading (열차 하중 작용 시 특정형상 인공자갈이 혼합된 도상층에서의 침하 거동 평가)

  • Kim, Dae Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.35-40
    • /
    • 2020
  • The ballast layers play a key role in distributing and supporting a trainload. On the other hand, it settles down by dynamic train loading due to large void ratios. Consequently, it requires continuous maintenance. In this paper, ballast layers mixed with three types of specially shaped artificial ballast (AB) (Rectangular, Tetrapod, Hexagonal) were modeled by using a two dimensional DEM (Discrete Element Method). Repeated loading tests were performed to evaluate the settlement behavior of the ballast layers. The smallest settlement was observed in the case of the ballast layer mixed with Tetrapod AB than in other cases, according to an analysis of the force transfer routes. In addition, contact force analysis showed that the Tetrapod AB, which has a concave shape, could easily make small and multi-channel force-transfer routes. This means that the stress in the ballast layer by the train loading transferred through the sleeper uniformly was distributed well by the AB. Therefore, the settlement of the ballast layer mixed with the concave-shaped Tetrapod AB could be reduced effectively under a repeated train loading. The effects of a decrease in settlement of the ballast layer highlight the possibility of a maintenance-free ballasted track.

Comparison of measured values and numerical analysis values for estimating smart tunnel based groundwater levels around vertical shaft excavation (수직구 굴착시 스마트 터널기반 지하수위 현장계측과 수치해석 비교 연구)

  • Donghyuk Lee;Sangho Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.153-167
    • /
    • 2024
  • Recently the ground settlement has been increasing in urban area according to development. And, this may attribute a groundwater level drawdown. This study presents an analysis of groundwater level drawdown for circular vertical shaft excavation of 「◯◯◯◯ double track railway build transfer operate project」. And, in-situ monitoring data and numerical analysis were compared. So, if we examine the groundwater level drawdown in design, ground conditions should be applied so that the site situation can be reflected. And, groundwater level should be considered a seasonal measurement in order to apply the appropriate groundwater level. It was confirmed a similar predicted value to groundwater level drawdown of in-situ monitoring data.

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics (토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발)

  • Choi, Choong-Lak;Lee, Kwang-Wu;Kim, Eun-Ho;Jung, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.

P-S Characteristics for End-bearing Pile in Granular Material (사질토 지반에서 선단지지말뚝의 P-S 특성)

  • Lee Yong Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • This paper investigates P-S (load-settlement) relationship for the end-bearing Pile in granular material using the CRISP FE Program with the laboratory 2D model pile load test. In order to simulate the effect of end-bearing pile problem in the FEA, the author adopts several forms of slip element around the pile length and the pile tip. Through this study it was found that e degree of non-associated Plastic flow rule incoporated into the Mohr-Coulomb model for the end-bearing pile with the slip elements was a dominant factor in terms of numerical solution convergence. In contrast, the roller boundary used along the pile shaft showed a smooth convergence with respect to the degree of non-associated plastic flow rule.

Dynamic Behavior on Transition Zone of the Railway Bridge-earthwork by Shape of Transition Zone (구조물 접속부 형상에 따른 철도 교량-토공 접속부의 동적거동)

  • Jung, Kwangsu;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.4
    • /
    • pp.5-13
    • /
    • 2021
  • The transition is the zone where support stiffness suddenly increases in the railway industry. If the support stiffness increases, differential settlement will occur at the transition due to difference of stiffness, and the differential settlement causes problems for the train running safety and the roadbed that supports the track. In particular, a study on differential settlement at bridge-earthwork transition was only conducted to considering railway load in most cases. However, these studies have not taken account of earthquake despite earthquake has been occurred frequently in the recent, and it is necessary to consider earthquake. Therefore, in this study numerical analysis has been performed by changing the inclination of approach block, which determines the shape of the transition, and earthwork in order to verify the effect of the shape of the transition on the dynamic behavior at the bridge-earthwork transition. The result shows that the dynamic behavior at the bridge-earthwork transition was affected by the shape of transition.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

An Experimental Study on Dynamic Behavior Evaluation of Transitional Track (접속부 궤도의 동적거동분석을 위한 실험적 연구)

  • Cho, Sung-Jung;Choi, Jung-Youl;Chun, Dae-Sung;Kim, Man-Cheol;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1379-1385
    • /
    • 2007
  • In domestic transitional zone design, there is regulation to prevent generation of irregular substructure behaviors that negatively influence in prevention of plasticity settlement on approach section and contact section as well as relieve overall track rigidity by reducing sectional foundation and track stiffness difference, but design guideline that considers dynamic behavior of transitional track in actual service line is very insignificant. Therefore in this study, characteristics of transitional track dynamic behaviors by substructure stiffness are researched and measured dynamic response of transitional track by substructure stiffness in order to prove correlation between substructure and track and calculate elasticity(stiffness) and track load of transitional track by using measurement and formula to provide basic information for developing design guideline considering dynamic behavior of service line transitional track.

  • PDF

Track Stability Assessment for Deep Excavations in Adjacent to Urban Railways (도시철도 인접지반 깊은 굴착 시 궤도 안정성 평가)

  • Jeon, Sang-Soo;Lee, Sang-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.614-627
    • /
    • 2018
  • Urban railway lines have been constructed adjacent to residential buildings and urban areas. The expansion of transportation networks and reconstruction of residential buildings in highly populated urban areas require deep excavations in areas adjacent to urban railways. Mobilized soil stresses and changes in the groundwater level induced by deep excavations results in track irregularities in urban railways. In this study, a three-dimensional finite difference model using the commercial program FLAC3D was adopted to estimate the horizontal displacements of earth retaining structures, settlements of backfill, the stability of track irregularity and underground box structure based on the criteria of each railway organization and its relationships. In deep excavations, a change in groundwater level induces relatively very small differences for track gauge irregularities, whereas relatively large differences for longitudinal irregularities of 72.5%, twist irregularities of 83.3%, cross level irregularities of 61.9%, and alignments of 43.3% were found to be the maximum differences when the horizontal displacement of earth retaining wall and settlement of backfill were 65.1% and 21.4%, respectively, because the groundwater level (GWL) on the ground surface-mobilized tensile strength of the underground box structure exceeds the allowable value. Therefore, three-dimensional numerical analysis was performed in this study. Overall, real-time monitoring should be carried out to prevent railway accidents in advance when a deep excavation adjacent to urban railway structures is constructed.

Evaluation of Tractive Performance of an Underwater Tracked Vehicle Based on Soil-track Interaction Theory (궤도-지반 상호작용 이론을 활용한 해저궤도차량의 구동성능 평가)

  • Baek, Sung-Ha;Shin, Gyu-Beom;Kwon, Osoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.43-54
    • /
    • 2018
  • Underwater tracked vehicle is employed to perform underwater heavy works on saturated seafloor. When an underwater tracked vehicle travels on the seafloor, shearing action and ground settlement take place on the soil-track interface, which develops the soil thrust and soil resistance, respectively, and they restrict the tractive performance of an underwater tracked vehicle. Thus, unlike the paved road, underwater tracked vehicle performance does not solely rely on its engine thrust, but also on the soil-track interaction. This paper aimed at evaluating the tractive performance of an underwater tracked vehicle with respect to ground conditions (soil type, and relative density or consistency) and vehicle conditions (weight of vehicle, and geometry of track system), based on the soil-track interaction theory. The results showed that sandy ground and silty sandy ground generally provide sufficient tractions for an underwater tracked vehicle whereas tractive performance is very much restricted on clayey ground, especially for a heavy-weighted underwater tracked vehicle. Thus, it is concluded that an underwater tracked vehicle needs additional equipment to enhance the tractive performance on the clayey ground.