• Title/Summary/Keyword: Track Rubber Pad

Search Result 10, Processing Time 0.021 seconds

A study of Heat Analysis on Track Rubber Parts (궤도고무부품의 열해석에 관한 연구)

  • Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.117-122
    • /
    • 1999
  • Track rubber parts has heat built-up as long as dynamic loading is applied from running tracked vehicles. Durability is required for rubber part to sustain the heat accumulation and heat exchange between rubber-metal assembly and environmental air and ground. For this research, the track assembly was divided into four parts i.e., bottom track shoe, upper track pad, pin busing and metal structure. Three rubber parts and metal structure were modelled and analyzed with MARC package program to obtain time-temperature data which was induced form mechanical work of tracked vehicles. heat accumulation data was obtained from special experiments under the room temperature of 25$^{\circ}C\;and\;35^{\circ}C$ to simulate the actual environmental conditions. From this research, it is cleared that the environmental temperature does not affect to the heat accumulation speed in rubber parts. Also, the heat built-up mechanism was clarified from the thermo-mechanical work based on numerical analysis and experiments.

  • PDF

Design Study on the Wear Enhanced of Rubber Pad of Track Assembly with Finite Element Method (유한요소법을 이용한 궤도용 고무패드의 마모 예측 및 설계에 관한 연구)

  • Lee, Kyoung-Ho;Roh, Keun-Lae;Lee, Young-Sin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.107-115
    • /
    • 2008
  • In this paper, we have proposed a wear growth prediction method on the surface of rubber pad of track assembly installed in high-speed battle tank i.e. the automatic model updating code interfacing with commercial finite element simulation software. Also, simple and resonable geometrical, material finite element model was established to be easily updated based on the empirical threshold value of contact pressure on the contact surface. From the iterative model update and analysis results, we discovered a weak point on rubber pad surface and suggested a new design concept for improving the wear performance of track assembly.

Prediction of Life Time of Rail Rubber Pad using Reliability Analysis Method

  • Park, Dae-Geun
    • International Journal of Railway
    • /
    • v.6 no.1
    • /
    • pp.13-25
    • /
    • 2013
  • Railpad prevents damage of the tie and ballast by reducing the impact and high frequency vibration, which occurs when a vehicle load transfers to a tie. But elasticity of the railpad can decrease under vehicle load and over usable period. If that happens, railpad will become stiffer. Increase in stiffness of the railpad also translates into a rise in track maintenance cost because it accelerates the damage of the track. In this study, accelerated heat ageing test was performed to predict an expectable lifetime of the railpad. As a result, it was predicted to be about sixteen years at $25^{\circ}C$ that life time of railpad using NR rubber from Arrhenius relationship. Also, it was predicted to be about thirty-two days at $100^{\circ}C$. At this time, a standard rate of thickness change is approximately within 12%.

Lifetime Prediction of Rubber Pad for High Speed Railway Vehicle (고속철도용 레일패드 노후화 정량화 방안 연구)

  • Woo, Chang-Su;Choe, Byeong-Ik;Park, Hyun-Sung;Yang, Shin-Chu;Jang, Sung-Yep;Kim, Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.739-744
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In this paper, the degradation of rail pad properties as a function of their in-service life is studied with a view of developing a technique for predicting the optimum period of track maintenance with regard to pad replacement. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.

Damage Evaluation of Track Components for Sleeper Floating Track System in Urban Transit (도시철도 침목플로팅궤도 궤도구성품의 손상평가)

  • Choi, Jung-Youl;Kim, Hak-Seon;Han, Kyung-Sung;Jang, Cheol-Ju;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.387-394
    • /
    • 2019
  • In this study, in order to evaluate the damage and deterioration of the track components of sleeper floating track (STEDEF), the field samples(specimens) were taken from the serviced line over 20 years old, and the track components were visually inspected, and investigated by laboratory tests and finite element analysis. As a result of visual inspection, the damage of the rail pad and fastener was slight, but the rubber boot was worn and torn at the edges of bottom. The resilience pads were clearly examined for thickness reduction and fatigue hardening layer. As a result of spring stiffness test of rail pad and resilience pad, the deterioration of rail pad was insignificant, but the deterioration of resilience pad exceeded design standard value. Therefore resilience pad was directly affected by train passing tonnage. As a result of comparing the deterioration state of the field sample and the numerical analysis result, the stress and displacement concentration position of the finite element model and the damage position of the field sample were coincident.

A Study on the Estimation of Temperature in Track Components due to Hystresis Loss. (히스테리시스 손실에 의한 괘도부품의 온도 추정에 관한 연구)

  • Kim, H.J.;Kim, B.T.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.48-55
    • /
    • 2001
  • In many applications. rubber components undergo dynamic stresses or deformations of fairly large magnitude. Since rubbers are not fully elastic, a part of the mechanical energy is converted into heat due to the hysteresis loss. Heat generation without adequate heat dissipation leads to heat build up. i. e. internal temperature rise. The purpose of this paper is to predict temperature rise caused by the hysteresis loss, in a rubber pad subjected to complex dynamic deformation. In this unsteady thermal analysis, the temperature distributions of track components are displayed in contour shapes and the temperature variations of some important nodes are represented graphically with respect to the running time of the tank.

  • PDF

Prediction of The Rail way Track's Vibration Behavior and Corresponding Experimental Verification (철도궤도의 동적특성 예측 및 실험적 검증 연구)

  • Park, Hee-Jun;Kim, Kwan-Ju;Kim, Jea-Chul;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.883-888
    • /
    • 2004
  • One of commercial rapid transits produces peculiar booming sound when passing through the slab-track tunnel. In order to analyze that tympanic membrane-pressing noise systematically, typical source-transfer path-response analysis was carried out. Considering the octave band of booming noise, work scope was confined to structure-borne noise analysis, especially the dynamic behaviour of railway tracks. Experimental modal analysis of railway tracks, composed of rail, rubber pad, sleeper, ballast, and ground were performed. The results shows that transversal bending modes of the rail are suspicious for the cause of the low band booming noise. Finite element analysis are made use of to match preceding experimental results, and plausible dynamic properties of track components are produced.

  • PDF

Crock Resistance Properties of Natural Rubber Compounds for Tank Track Pads (군용 전투차량 궤도 pads용 천연고무 배합물의 내크랙성 향상을 위한 연구)

  • Shin, Jung-Eun;Kim, Yu-Seuk;Bae, Jong-Woo;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.335-344
    • /
    • 1998
  • In this study, the tearing energy and the rate of crack propagation of natural rubber (NR) compounds were evaluated to improve the crack resistance of tank-track pads. Although the factors affecting the crack resistance properties of NR compounds are various in this experiment, the effects of filler(carbon black) and the crosslinking system were evaluated. When the amount of accelerator is equal to that of sulfur( eg. efficient vulcanization), the compound shows the most excellent in the aged mechanical properties and the crack resistance properties. The ISAF carbon black(CB) having a good reinforcing characteristics was better than any other CB grades in physical properties and processablity. The optimum content was 50phr.

  • PDF

Evaluation of Static Spring Constant and Accelerated Life Prediction for Compression Set of Polyurethane Resilient Pad in Rail Fastening System

  • Lee, Seung-Won;Park, Jun-Young;Park, Eun-Young;Ryu, Sung-Hwan;Bae, Seok-Hu;Kim, Nam-Il;Yun, Ju-Ho;Yoon, Jeong-Hwan
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.220-225
    • /
    • 2018
  • Resilient pads play a major role in reducing the impact of loads on a rail in a rail-fastening system, which is essentially used for a concrete track. Although a compression set test is commonly used to measure the durability of a resilient pad, the static spring constant is often observed to be different from the fatigue test. In this study, a modified compression set test method was proposed to monitor the variations in the compression set and static spring constant of a resilient pad with respect to temperature and time. In addition, the life of the resilient pad was predicted by performing an acceleration test based on the Arrhenius equation.

Vertical Z-vibration prediction model of ground building induced by subway operation

  • Zhou, Binghua;Xue, Yiguo;Zhang, Jun;Zhang, Dunfu;Huang, Jian;Qiu, Daohong;Yang, Lin;Zhang, Kai;Cui, Jiuhua
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.273-280
    • /
    • 2022
  • A certain amount of random vibration excitation to subway track is caused by subway operation. This excitation is transmitted through track foundation, tunnel, soil medium, and ground building to the ground and ground structure, causing vibration. The vibration affects ground building. In this study, the results of ANSYS numerical simulation was used to establish back-propagation (BP) neural network model. Moreover, a back-propagation neural network model consisting of five input neurons, one hidden layer, 11 hidden-layer neurons, and three output neurons was used to analyze and calculate the vertical Z-vibration level of New Capital's ground buildings of Qingdao Metro phase I Project (Line M3). The Z-vibration level under different working conditions was calculated from monolithic roadbed, steel-spring floating slab roadbed, and rubber-pad floating slab roadbed under the working condition of center point of 0-100 m. The steel-spring floating slab roadbed was used in the New Capital area to monitor the subway operation vibration in this area. Comparing the monitoring and prediction results, it was found that the prediction results have a good linear relationship with lower error. The research results have good reference and guiding significance for predicting vibration caused by subway operation.