• Title/Summary/Keyword: Track Maintenance

Search Result 440, Processing Time 0.027 seconds

Energy harvesting techniques for remote corrosion monitoring systems

  • Kim, Sehwan;Na, Ungjin
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • An Remote Corrosion Monitoring (RCM) system consists of an anode with low potential, the metallic structures against corrosion, an electrode to provide reference potential, and a data-acquisition system to ensure the potential difference for anticorrosion. In more detail, the data-acquisition (DAQ) system monitors the potential difference between the metallic structures and a reference electrode to identify the correct potential level against the corrosion of the infrastructures. Then, the measured data are transmitted to a central office to remotely keep track of the status of the corrosion monitoring (CM) system. To date, the RCM system is designed to achieve low power consumption, so that it can be simply powered by batteries. However, due to memory effect and the limited number of recharge cycles, it can entail the maintenance fee or sometimes cause failure to protect the metallic structures. To address this issue, the low-overhead energy harvesting circuitry for the RCM systems has designed to replenish energy storage elements (ESEs) along with redeeming the leakage of supercapacitors. Our developed energy harvester can scavenge the ambient energy from the corrosion monitoring environments and store it as useful electrical energy for powering local data-acquisition systems. In particular, this paper considers the energy harvesting from potential difference due to galvanic corrosion between a metallic infrastructure and a permanent copper/copper sulfate reference electrode. In addition, supercapacitors are adopted as an ESE to compensate for or overcome the limitations of batteries. Experimental results show that our proposed harvesting schemes significantly reduce the overhead of the charging circuitry, which enable fully charging up to a 350-F supercapacitor under the low corrosion power of 3 mW (i.e., 1 V/3 mA).

Seismic Response of Multiple Span Prestressed Concrete Girder Bridges in the New Madrid Seismic Zone (New Madrid 지진대의 다경간 PSC 교량의 지진거동)

  • Choi, Eun-Soo;Kim, Hak-Soo;Kim, Kwang-Il;Cho, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.11-23
    • /
    • 2006
  • This paper evaluates the seismic response of multi-span prestressed concrete girder bridges typically found in the New Madrid Seismic Zone region of the central United States. Using detailed nonlinear analytical models and synthetic ground motion records for Memphis, TN, nonlinear response history analyses are performed for two levels of ground motion: 10% probability of exceedance (PE) in 50 years, and 2% probability of exceedance (PE) in 50 years. The results show that the bridge performance is very good fur the 10% PE in 50 years ground motion level. However, the performance for the 2% PE in 50 years ground motion is not so good because it results in highly inelastic behavior of the bridge. Impact between decks results in large ductility demands on the columns, and failure of the bearings that support the girders. It is found that making the superstructure continuous, which is commonly performed for reducing dead load moments and maintenance requirements, results in significant improvement in the seismic response of prestressed concrete girder bridges.

Brief review of the field test and application of a superconducting fault current limiter

  • Hyun, Ok-Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • This article reviews the recent activities of field testing and application of superconducting fault current limiters (SFCL) based on high-temperature superconductors (HTS). The review particularly focuses on the trends in the field tests in terms of the technical aspects and commercial activities of the SFCLs. Stimulated by the discovery of HTS, numerous research and development activities have been conducted worldwide for SFCLs operating from distribution voltages to transmission voltages. Different types of SFCLs have been developed and field-tested. Consequently, more than 20 field tests and applications have been performed on real grids worldwide while supplying electric power to the customers. These field tests have not only provided the track records of the operation experiences including the problems and maintenance during operation, but also proved their current limiting capabilities against real faults, rendering this new technology highly viable. Through these activities, the following trends in the status of field testing and application are observed. Resistive-type SFCLs with HTS-coated conductors were dominantly used in the most recent field tests. This implies that the resistive type is technically more mature than the other types. Bus-bar coupling and transformer feeders were the major application locations. It is of importance that most of the field applications were conducted as R&D projects. A relevant change from the R&D stage to the application stage is shown as recently deployed SFCLs are expected to be under long-term operation and commercial service. Here, we review the installation of these SFCLs by substation. This review also discusses the recent activities for their commercial applications.

Study on Design of Mobile Robot for Autonomous Freight Transportation (무인 화물이송 이동로봇의 설계에 관한 연구)

  • Jeong, Dong-Hyuk;Park, Jin-Il;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.202-207
    • /
    • 2013
  • In the paper, we design a autonomous mobile robot for freight transportation and propose an operation method of the robot in the warehouse. In order to implement autonomous navigation, it is needed to recognize the position of the robot and track the path to the target. Previous methods are hard to change the workspace environment and need high cost to install and keep a maintenance of the system. The lifter of freight transportation robot is designed to load and unload a baggage through up and down motion. Also, ultrasonic sensor, RFID, QR-code and camera sensor is used to carry out various functions while the robot navigates in the various environment. We design an operation method of the mobile robot in order to effectively arrive a goal position and transport a freight. The proposed methods are verified through various experiments.

Effects of a Wrist Extension Splint on Muscle Power and Activities of the Forearm Muscles: Comparison of Day Versus Nighttime Wear Instructions

  • Yoon, Ji-Yeon;An, Duk-Hyun;Yoo, Won-Gyu
    • Physical Therapy Korea
    • /
    • v.15 no.4
    • /
    • pp.43-49
    • /
    • 2008
  • The objective of this study was to compare the differences on the activity and power of the wrist flexors and extensors in subjects before the use of a wrist extension splint, after nighttime wearing of the splint, and after daytime wearing of the splint. Ten healthy male and ten healthy female students (mean: $22.4{\pm}1.2$ years old) volunteered to wear custom-made wrist splints either during the night or during the day, The hand force of the wrist flexor and extensor, and grip force were measured by PowerTrack II and Dynatron, respectively. At the same time, the activities of the wrist flexor and extensor were recorded by' surface electromyography. The maximal hand force and motor unit recruitment of the flexor carpi ulnatis (FCU) increased significantly (p<.05) when tile subjects wore the wrist splints during the daytime, but the maximal hand power of the FCU decreased with nighttime use of the splints. The maximal hand power and motor unit recruitment of the extensor carpi radialis (ECR) and the ECR/FCU ratio decreased both during nighttime and daytime use. The decrement of the ECR/FCU ratio was significant (p<.05). Wearing a wrist extension splint during nighttime led to the maintenance of a lengthened position of the wrist flexor, resulting in the wrist flexor becoming weak. Wearing a wrist extension splint during the day induced the wrist flexors to be greater. In healthy people, the imbalance between the wrist flexors and extensors may be caused by the use of a wrist extension splint. This study indicates that therapists have to consider whether a splint will be effective, as well as the wearing time, when prescribing splints to people with problems of the musculoskeletal system.

  • PDF

Evaluation of torsional response of a long-span suspension bridge under railway traffic and typhoons based on SHM data

  • Xia, Yun-Xia;Ni, Yi-Qing;Zhang, Chi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.371-392
    • /
    • 2014
  • Long-span cable-supported bridges are flexible structures vulnerable to unsymmetric loadings such as railway traffic and strong wind. The torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds may deform the railway track laid on the bridge deck and affect the running safety of trains and the comfort of passengers, and even lead the bridge to collapse. Therefore, it is eager to figure out the torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds. The Tsing Ma Bridge (TMB) in Hong Kong is a suspension bridge with a main span of 1,377 m, and is currently the world's longest suspension bridge carrying both road and rail traffic. Moreover, this bridge is located in one of the most active typhoon-prone regions in the world. A wind and structural health monitoring system (WASHMS) was installed on the TMB in 1997, and after 17 years of successful operation it is still working well as desired. Making use of one-year monitoring data acquired by the WASHMS, the torsional dynamic responses of the bridge deck under rail traffic and strong winds are analyzed. The monitoring results demonstrate that the differences of vertical displacement at the opposite edges and the corresponding rotations of the bridge deck are less than 60 mm and $0.1^{\circ}$ respectively under weak winds, and less than 300 mm and $0.6^{\circ}$ respectively under typhoons, implying that the torsional dynamic response of the bridge deck under rail traffic and wind loading is not significant due to the rational design.

The Evaluation of GHG Emissions in Railroad Construction Sector (철도건설의 온실가스 배출량 산정평가)

  • Lee, Jae-Young;Jung, Woo-Sung;Hwang, In-Hwan;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.271-275
    • /
    • 2011
  • According to governmental policies for green growth, the increase in the traffic volume of railroad is a representative method to reduce total greenhouse gas (GHG) emitted from transport. Comprehensive assessment for the GHG emission of railroad has been studied to compare the difference of transport modes just in the operating step excluded the construction step. The purpose of this study was to evaluate GHG emissions in railroad construction sector. The targets were some construction works for civil, track, building, and electric system in A line. The GHG emission source of constructing railroad infrastructure was mainly the energy consumption of heavy equipments. As a result, the civil construction sector showed more than 96% of total GHG emissions and its specific GHG emission was 2.191 ton $CO_2e/m$. Also, the specific GHG emissions of civil construction works were of the order: earthworks > tunnels > bridges > station. In future, it will be required to calculate the overall GHG emission of railroad through life cycle approaches including operation, maintenance and disposal step.

Photo-sensorless dual-axis solar tracking system combined with IoT platform (IoT플랫폼이 결합된 광센서가 없는 태양광 추적 시스템)

  • Jung, Deok-Kyeom;Jeon, Jong-Woon;Park, Sung-Min;Chung, Gyo-Bum
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.664-671
    • /
    • 2018
  • Generally, conventional solar tracking systems employ irradiance sensors to track a sun position, which enables the system to generate maximum solar energy. The usage of irradiance sensors increases system costs and deteriorates the performance of systems from sensor malfunctions. In this paper, a new solar tracking system without irradiance sensors has been proposed in which the controller capable of controlling and monitoring remotely is based on Artik platform. The proposed system tracks the sun position by comparing the amount of currents from several solar panels, resulting in removing irradiance sensors. In order to verify the performance of the proposed solar tracking method, the 12[V]-20[W] prototype system is built and implemented. Since the proposed system has remote monitoring functions through the employment of Artik as the IoT platform, more advantages in installation, maintenance and expanded functionality can be obtained compared to the conventional solar tracking system.

3D Dynamic Finite Element Analysis and Corresponding Vibration of Asphalt Track Considering Material Characteristics and Design Thickness of Asphalt Concrete Roadbed Under Moving Load (아스팔트 콘크리트 설계두께 및 재료특성을 반영한 아스팔트 콘크리트 궤도 3차원 이동하중 동적해석 및 진동특성)

  • Lee, SeongHyeok;Seo, HyunSu;Jung, WooYoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • The asphalt-concrete trackbed system has many advantages in terms of maintenance and economics. However, methods to investigate practical use corresponding to the development of the trackbed system must be developed. The primary objective of this study was to evaluate the dynamic performance of the asphalt system in accordance with both the elastic and viscoelastic material characteristics and design thickness of the asphalt trackbed. More specifically, in order to reduce the uncertainty error of the Finite Element(FE) model, a three-dimensional full scale FE model was developed and then the infinite foundation model was considered. Finally, to compare the condition of viscoelastic materials, performance evaluation of the asphalt-concrete trackbed system was used to deal with the dynamic amplification factors; numerical results using isotropic-elastic materials in the FE analysis are presented.

Comparative Study on Ride Comfort and Optimum Horizontal Curve Conditions for Superimposition of Vertical and Horizontal Curve (종곡선/평면곡선 경합여부에 따른 최적평면선형조건 및 승차감 비교 분석)

  • Um, Ju-Hwan;Choi, Il-Yoon;Yang, Sin-Chu;Lee, Il-Hwa;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.589-594
    • /
    • 2010
  • Superimposition of horizontal and vertical curves may hamper the ride comfort and running stability of train and largely affect the maintenance costs. However, in many cases, it is not easy to make a track alignment plan because of the geographic conditions or undesirable environmental factors. In this paper, a comparative study on the effect of superimposition of vertical and horizontal curve on the ride comfort and optimum horizontal curve conditions was performed. That is, optimal cant and ride comfort analysis with and without a vertical curve superimposed on the horizontal curve were evaluated. Also the superimposition effect on ride comfort and alignment conditions in high speed zone were evaluated. From the analysis results, it was found that the ride comfort is similar to that at the only horizontal curves when applying the compensation cant for the superimposed site.