• Title/Summary/Keyword: Tracer experiment

Search Result 120, Processing Time 0.025 seconds

Tracer Experiment and Computational Fluid Dynamics Analysis for the Drainage Efficiency of a Reservoir (배수지의 배수효율분석을 위한 추적자실험 및 전산유체해석)

  • Cho, Jung-Yeon;Go, Sun-Ho;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.22-27
    • /
    • 2017
  • During the water treatment process for household water supply, a reservoir is the last place the water is stored before being supplied to users, and the duration of the water's stay is an important factor that affects its safety. This may cause the concentration of the residual chlorine disinfectant to increase and thus lower the water's quality. The concentration and discharge efficiency of residual chlorine must be verified and managed, because these are key factors that affect the reservoir's performance. Because the actual verification test for analyzing the efficiency of a reservoir and the disinfectant's dilution capacity is difficult, simulations are generally conducted using the computational fluid analysis method. However, the simulation results require validation with experiments. The error and drainage efficiency were analyzed in this study by comparing and analyzing the actual tracer test and simulation so that the actual test for a hexagonal drainage can be replaced by the computational fluid analysis method. Based on the results of the efficiency analysis, the hexagonal reservoir was found to be appropriate, and the simulation's reliability was verified with a tracer test.

Analysis of the Disease Spread in a Livestock Building Using Tracer Gas Experiment (추적가스 실험을 통한 축사 내 질병 확산 분석)

  • Song, Sang-Hyeon;Lee, In-Bok;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Bitog, Jessie P.;Hong, Se-Woon;Seo, Il-Hwan;Moon, Oun-Kyeong;Kim, Yeon-Joo;Choi, Eun-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.37-45
    • /
    • 2012
  • Recently, the livestock industry in Korea was heavily affected by the outbreak of official livestock diseases such as foot and mouse disease, high pathogenic avian influenza, swine influenza, and so on. It has been established that these diseases are being spread through direct contact, droplet and airborne transmission. Among these transmissions, airborne transmission is very complex in conducting field investigation due to the invisibility of the pathogens and unstable weather conditions. In this study, the airborne transmission was thoroughly investigated inside a pig house by conducting tracer gas ($CO_2$) experiment because experiment with real pathogen is limited and dangerous. This is possible as it can be assumed that the flow is similar pattern very fine particles and gas. In the experiment, the ventilation structure as well as the location of gas emission were varied. The $CO_2$ detection sensors were installed at 0.5 and 1.3 m height from the floor surface. The tracer gas level was measured every second. Results revealed that the direction of spread can be determined by the response time. Response time refers to the time to reach 150 ppm from the gas emission source at each measuring points. The location of the main flow as well as the gas emission was also found to be very important factor causing the spread.

Feasibility of Streaming Potential Signal on Estimation of Solute Transport Characteristics

  • Kabir, Mohammad Lutful;Ji, Sung- Hoon;Lee, Jin-Yong;Koh, Yong- Kwon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.41-46
    • /
    • 2015
  • The drag of the excess charge in an electrical double layer at the solid fluid interface due to water flow induces the streaming current, i.e., the streaming potential (SP). Here we introduce a sandbox experiment to study this hydroelectric coupling in case of a tracer test. An acrylic tank was filled up with homogeneous sand as a sand aquifer, and the upstream and downstream reservoirs were connected to the sand aquifer to control the hydraulic gradient. Under a steady-state water flow condition, a tracer test was performed in the sandbox with the help of peristaltic pump, and tracer samples were collected from the same interval of five screened wells in the sandbox. During the tracer test, SP signals resulting from the distribution of 20 nonpolarizable electrodes were measured at the top of the tank by a multichannel meter. The results showed that there were changes in the observed SP after injection of tracer, which indicated that the SP was likely to be related to the solute transport.

Evaluation of INPUFF Model Using METREX Tracer Diffusion Experiment Data (METREX 확산실험 자료를 이용한 INPUFF모델의 평가)

  • 이종범;송은영;황윤성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.437-452
    • /
    • 2002
  • The Metropolitan Tracer Experiment (METREX) was performed over the Washington, D.C. area using two inert, non-deposition perfluorocarbon gases for over 1 year period (November 1983∼December 1984). Two perfluorocarbon gas tracers (PDCH, PMCH) were released simultaneously at intervals of every 36 hours for 6 hours, regardless of the meteorological conditions in metropolitan area. Samples were collected continuously for 8 hours at a central downtown and two adjacent suburban locations. Monthly air samples were collected at 93 sites across the whole region (at urban, suburban, and rural locations). The purpose of this study is to simulate INPUFF and ISCST model using METREX data, and to compare calculated and observed concentrations. In the case of INPUFF simulation, two meteorological input data were used. One is result data from wind field model which was calculated by diagnostic wind model (DWM), the other is meteorological data observed at single station. Here, three kinds of model calculation were performed during April and July 1984; they include (1) INPUFF model using DWM data (2) INPUFF model using single meteorological data (3) ISCST model. The monthly average concentration data were used for statistic analysis and to draw their horizontal distribution patterns. Eight-hour-averaged concentration was used to describe movement of puff during the episode period. The results showed that the concentrations calculated by puff model (INPUFF) were better than plume model (ISCST). In the case of puff model (INPUFF), a model run using wind field data produced better results than that derived by single meteorological data.

Thermal environment analysis of greenhouse using Thermo-tracer (Thermo-tracer를 이용한 온실의 열환경 분석)

  • 이석건;이종원;이현우;김란숙
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.230-236
    • /
    • 1998
  • Thermal environment of greenhouse was investigated by thermo-tracer in this study. The Thermo-tracer is a high-sensitivity infrared thermometer of non-contact type. The infrared energy emitted from the measured object is converted into an electrical signal by the detector(HgCdTe) and display as a color or black & white thermal image by way of optical scanning, The experiment was conducted for Venlo-type greenhouse with pad & fan system. The temperature difference between measured by Thermo-trace and measured by HOBO sensor is maximum 0.8$^{\circ}C$. Thermo-trace is possible to use for the thermal environment analysis and diagnosis of a cooling and heating system of greenhouse.

  • PDF

Numerical Simulation for the Field Tracer Experiment over the Kori Nuclear Power Plant (고리 원전주변에서 야외 확산실험 모사)

  • Suh, Kyung-Suk;Kim, Eun-Han;Whang, Won-Tae;Jeong, Hyo-Joon;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.205-212
    • /
    • 2004
  • Three-dimensional wind field and atmospheric dispersion models have been developed for estimating the concentration distributions of radioactive materials released into atmosphere. The field tracer experiment near the Kori nuclear power plant located over complex terrain was carried out for validating the atmospheric dispersion model. The wind fields were one of the most important factors for calculating the concentration. Therefore several numerical simulations using the measured wind data were performed to get more accurate concentration distributions compared with the analyzed values of the tracer gas. The calculated concentration distributions agreed well in the case of the usage of the more measured wind data in wind field model.

Tracer Experiment for the Investigation of Urban Scale Dispersion of Air Pollutants - Simulation by CALPUFF Dispersion Model and Diffusion Feature of Tracer Gases (추적자 확산 실험에 의한 서울 도심 확산 현상 연구 - 추적기체의 확산특징과 CALPUFF 모델에 의한 모사)

  • Lee, Chong-Bum;Kim, Jea-Chul;Lee, Gang-Woong;Ro, Chul-Un;Kim, Hye-Kyeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.405-419
    • /
    • 2007
  • A series of tracer experiments for the evaluation of atmospheric dispersion was performed over the urban area of Seoul using two inert, non-deposition perfluorocarbon (PMCH and m-PDCH) gases during three years campaign on 2002, 2003 and 2005. 30 sampling sites for collecting these tracers were located along two arcs of 2.5 and 5 kilometers downwind from the release point. About ten measurements which each lasted for 2 hours or 4 hours were made over the two consecutive days during each campaign. CALPUFF and MM5 meteorological model were applied to evaluate the urban dispersion in detail. Size of Modeling domain was $27\;km{\times}23\;km$ and the fine nest in the modeling domain had a grid size of 0.5 km. The results showed that CALPUFF dispersion model had a tendency to estimate tracer concentrations about $2{\sim}5$ times less than those of ambient samples under many conditions. These consistent inaccuracy in urban dispersion was attributed to inherent inaccuracy and lack of details in terrain data at urban area.

The RTD Measurement on a Submerged Bio-Reactor using a Radioisotope Tracer and the RTD Analysis

  • Seungkwon Shin;Kim, Jongbum;Sunghee Jung;Joonha Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.210-214
    • /
    • 2003
  • This paper presents a residence time distribution (RTD) measurement method using a radioisotope tracer and the estimation method of RTD model parameters to analyze a submerged bio-reactor. The mathematical RTD models have been investigated to represent the flow behavior and the existence of stagnant regions in the reactor. Knowing the parameters of the RTD model is important for understanding the mixing characteristics of a reactor The radioisotope tracer experiment was carried out by injecting a radioisotope tracer as a pulse into the inlet of the reactor and recording the change of its concentration at the outlet of the reactor to obtain the experimental RTD response. The parameter estimation was performed by the Levenberg-Marquardt optimization algorithm. The proposed scheme allowed the parameter estimation of RTD model suggested by Adler-Hovorka with very low deviations. The estimation procedure is shown to lead to accurate estimation of the RTD parameters and to a good agreement between experimental and simulated response.

Analysis of a Pollutant Flow Tracer Test in River using Radioactive Isotope (하천에서 추적자를 이용한 오염물질 거동분석)

  • Kim, Ki-Chul;Lee, Jong-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.400-406
    • /
    • 2009
  • In this study, in order to find the movement of polluted substance that is flown into the river and the characteristics of dispersion, the experiment that used the RI (Radioactive Isotope) tracer in the river was undertaken, and by using the experiment result, the figure modelling was undertaken to analyze the general type of pollutant dispersion. In addition, in order to calculate more accurate dispersion range and moving time, the experiment was done in about 2km from the measuring points of Namdae Stream around the Yongdam Dam of the upper Geum River to the lower stream. In order to find out the flow of river and dispersion of polluted substance, RMA (Resource Modeling Associates)-2 and RMA-4 program are used in study. The site experiment using the RI was implemented for the experiment in the applied area and the same area, and the distance between each zone was set for 1km with the slight difference for site situation and measured the density date of one second distance through the NaI apparatus to measure the density data of one second interval. On the basis of this measured data, it is compared and analyzed with the result of figure copy of the models to make the comparison and analysis of density distribution following the change in expansion coefficient that makes great influence on expansion range and dispersion in natural rivers.

Validation of a Real-Time Dose Assessment System over Complex Terrain (복잡한 지형상에서 실시간 피폭해석 시스템 검증)

  • Suh, Kyung-Suk;Kim, Eun-Han;Hwang, Won-Tae;Choi, Young-Gil;Han, Moon-Hee;Jung, Sung-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • A real-time dose assessment system(FADAS : Following Accident Dose Assessment System) has been developed for the real-time accident consequence assessment against a nuclear accident. Field tracer experiment near Younggwang nuclear power plant was performed to improve the accuracy of developed system and to parameterize the site-specific parameters into the FADAS. The mean values and turbulent components of wind profile obtained through field experiment have been reflected to FADAS with site-specific conditions. The simulated results of diffusion model agreed well with the measured data through tracer experiment. The developed system is being used as a basic module of emergency preparedness system in Korea. The diffusion model which can be reflected site-specific parameters will be improved through field experiments continuously.

  • PDF