• Title/Summary/Keyword: Tracer

Search Result 975, Processing Time 0.032 seconds

Performance Evaluation of Advanced Container Security Device(ACSD) system based on IoT(Internet of Things) (IoT 기반 컨테이너 보안 장치 및 시스템 성능 평가)

  • Moon, Young-Sik;Choi, Sung-Pill;Lee, Eun-Kyu;Kim, Jae-Joong;Choi, Hyung-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2183-2190
    • /
    • 2013
  • Container Security Device (ConTracer) which is suggested in this study is to monitor temperature, humidity, and impact inside of the container while the container is transported. ConTracer could also give information to users when a door of the container is opened over 2 inch within 1 second. Additionally, GPS/GLONASS based global position and status information about container are transmitted to a remote server using IoT (Internet of Things) based communication. In this research, we are looking into the development trend of global container security devices; and applying ConTracer to real freight transport from domestic to overseas using Global Roaming Service which is offered for domestic Mobile Communication Companies as well. As a result, we estimate the performance of ConTracer and verify it.

Numerical Simulation of Tracer Distribution during CAPTEX (CAPTEX 자료에 나타난 추적물 농도 분포의 수치 모사)

  • Kim, Seung-Bum;Lee, Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.357-370
    • /
    • 1994
  • This paper introduces an Eulerian long- range transport model coupled with a mesoscale atmospheric model. The model has been applied to the simulation of tracer distribution during two cases of Cross Appalachian Tracer Experiment (CAPIEX). Meteorological fields are Predicted by CSU RAMS with four-dimensional assimilation and tracer transport is computed from an Eulerian dispersion model. The atmospheric model with a four-dimensional assimilation has produced meteorological fields that agree well with observation and has proved its high potential as a generator of meteorological data for a long-range transport model. The Present transport model Produces reasonable simulations of observed tracer transport although it was partially successful in the case with complicated structure in observed concentration. Model with Bott's 2nd-order scheme performs as well as that with Bott's 4th-order scheme and increased explicit horizontal diffusivity. Diagnosis of the model results indicates that the Present long-range transport model has a good potential as a framework for the acid deposition model with detailed cloud and chemical processes.

  • PDF

An Experimental Study of Flow and Dispersion Characteristics in Meandering Channel (사행수로에서의 유속 및 분산특성에 관한 실험적 연구)

  • Park, Sung-Won;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.799-802
    • /
    • 2008
  • General behaviors based on hydraulic characteristics of natural streams and channels have been recently analyzed and developed via various numerical models. However in the states of natural hydraulics, an experimental research must be performed simultaneously with the mathematical analysis due to effects of hydraulic properties such as meander, sediment, and so on. In this study based on 2-D advection-dispersion equation, flow and tracer experiments were performed in the S-curved meandering laboratory channel with a rectangular cross-section. The channel was equipped with instrument carriages which was equipped with an auto-traversing system to be used with velocity measuring sensors throughout the depth and breadth of the flow field. To measure concentration distribution of the salt solution was adjusted to that of the flume water by adding methanol and a red dye (KMnO4) was added to aid the visualization of the tracer cloud, the tracer was instantaneously injected into the flow as a full-depth vertical line source by the instantaneous injector and the initial concentration of the tracer was 100,000 mg/l. The secondary current as well as the primary flow pattern was analyzed to investigate the flow distribution in the meandering channels. The velocity distribution of the primary flow for all cases skewed toward the inner bank at the first bend, and was almost symmetric at the crossovers, and then shifted toward the inner bank again at the next alternating bend. Thus, one can clearly notice that the maximum velocity occurs taking the shortest course along the channel, irrespective of the flow conditions. The result of the tracer tests shows that pollutant clouds are spreading following the maximum velocity lines in each cases with various mixing patterns like superposition, separation, and stagnation of pollutant clouds. Flow characteristics in each cases performed in this study can be compared with tracer dispersion characteristics with using evaluation of longitudinal and transverse dispersion coefficients(LDC, TDC). As expected, LDC and TDC in meandering parts have been evaluated with increasing distribution and straight parts have effected to evaluate minimum of LDC and TDC due to symmetric flow patterns and attenuations of secondary flow.

  • PDF

Feasibility of Granular Activated Charcoal as a Detector in Fluorescent Tracer Tests (입상 활성탄을 이용한 형광물질 추적자시험 적용성 연구)

  • Lee, Jin-Yong;Hwang, Hyoun-Tae;Yi, Myeong-Jae;Kim, Yong-Cheol;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.86-93
    • /
    • 2007
  • In recent tests using tracer have been frequently conducted by fluorescent tracers. In this study, granular activated charcoal (GAC) as a detector for the fluorescent tracers (rhodamine WT and uranine) was investigated through laboratory and field tests. In the laboratory tests, tracer concentrations of rhodamine WT and uranine determined by the GAC were slightly different from those of standard solutions but they were excellent in linearity. Results show that GAC is excellent as tracer detector when concentration of the fluorescent tracers is greater than 10 & micro; g/L whileas no obvious differences in mixed solutions of the two tracers due to interferences. Compared to conventional methods of water sampling, field results shows a high potential of GAC as a tracer in the field. Our results also show that wet analysis is better for the lower concentrations of tracers whileas dry analysis is good for high concentrations of tracers. This study demonstrates that fluorescent tracer detection using the GAC is very useful and economical for a hydraulic connection between target areas and very longer period of the tracer test.

A Study on Performance Improvement of ConTracer Using Taguchi Method (다구찌법을 이용한 컨테이너화물 안전수송장치 ConTracer의 성능향상에 관한 연구)

  • Choi, Hyung-Rim;Kim, Jae-Joong;Kang, Moo-Hong;Shon, Jung-Rock;Shin, Joong-Jo;Lee, Ho-In;Kim, Gwang-Pil;Kim, Chae-Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.2
    • /
    • pp.23-31
    • /
    • 2009
  • Since 9.11 terrorist attacks against the USA, the new paradigm for "supply chain security" has been established. And at the same time a lot of researches are being made on supply chain security by many foreign companies or research institutes. However, domestically the terms "supply chain security" themselves are not yet familiar, and the paradigm of security are not being used in the logistics, while little researches are being made on them But recently along with development of "ConTracer," a supply chain security technology, which is to be used as the equipment for container cargo transportation safety based on RF1D technology, related researches have begun to be activated. The key issues for the development of equipment for container transportation safety are to obtain both a high recognition rate and enough recognition distance. To this end, this study has tested the ConTracer (433 MHz type and 2.4 GHz type) by using Taguchi Method. According to our test results, in the case of 433 MHz type, it is a little more effective that the reader faces to the front-right side, and in the case of 2.4 GHz, reader direction does not make difference in the view of sensitivity. The test also has proved that it is better that antenna location, as expected, is to be installed on the outside for both types alike.

Effects of Velocity Structures on Tracer Mixing in a Meandering Channel (사행수로에서 유속구조가 추적물질의 혼합에 미치는 영향)

  • Seo, Il Won;Park, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.35-45
    • /
    • 2009
  • In this study, a laboratory experiment has been performed on a S-curved channel with two curved sections. In the experiments, effects of 3-D velocity structures on mixing characteristics of tracer material were investigated. As a result, it was clearly noticed that the primary flow travels taking the shortest course of the meandering channel and has a very ununiform distribution at the bends. The secondary cell which was developing at the first bend disappears at the crossover, and then, at the next bend, secondary cell is re-developing in the opposite direction. The experimental results show that mixing of tracer is significantly affected by the combined action of ununiform primary flow and secondary cell. The ununiform primary flow separates the tracer cloud in the longitudinal direction, and the secondary cell further separates the retarding tracer cloud mainly in the transverse direction. As a result, these complex flow structures cause separation and spreading of tracer cloud both in the longitudinal and in the transverse directions. The measured dimensionless transverse dispersion coefficients calculated using 2-D routing procedure ranges 0.012-0.875, and is generally proportional to width to depth ratio (W/h). The predicted values calculated by the theoretical equation overestimate slightly the measured transverse dispersion coefficients.

Hydraulic Residence Time in a Prototype Free Water Surface Constructed Wetland

  • Lee, Kyung-Do;Kwun, Soon-Kuk;Kim, Seong-Bae;Cho, Young-Hyun;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, a tracer test using rhodamine-WT was performed to investigate the flow characteristics and to quantify the observed hydraulic residence time (HRT) for a high-lying cell in the Banwol wetland of the Sihwa constructed wetland. The tracer test indicated that even if flow was mainly observed in the open water area of the Banwol wetland, water flowed continuously in the vegetative area and there was no dead zone. The calculated HRT (51.3 hrs), calculated by dividing the wetland volume by the wetland inflow, exceeded the observed HRT (38.7 hrs), since the short-circuiting of flux resulting from irregular topography and vegetation was not reflected in the calculated HRT. The exit tracer concentration curves were reproduced well by both the plug flow with dispersion and tanks-in-series models, indicating that the performance of the Banwol wetland can be estimated accurately using these models.

Effect of Contaminant Source Location on Indoor Air Quality

  • Lee, Hee-Kwan;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.E
    • /
    • pp.1-7
    • /
    • 1998
  • This paper presents an experimental study for understanding the indoor air quality in a room. A model room, which had a ceiling-mounted supply and a sidewall-mounted exhaust, was used to examine the effect of air exchange rate (AER) and contaminant source location (CSL) as a function of the elapsed time. A tracer gas method, using carbon monoxide tracer, gas analyzers, and a data acquisition system, was applied to study the ventilation air distribution and the tracer removal efficiency, so-called pollutant removal efficiency, in the model room. The experiment was composed of two parts; firstly the AER was varied to examine its effect on the ventilation air distribution and the ventilation effectiveness and secondly both AER and CSL were considered to determine their effect on the pollutant removal efficiency. It was found that the ventilation effectiveness in the model was proportional to AER but not linearly. It was also found that changing the CSL can improve the pollutant removal efficiency. In some cases, the efficiency improvement by increasing AER was achieved by simply changing CSL.

  • PDF

A Speed-Based Dijkstra Algorithm for the Line Tracer Control of a Robot (로봇 경로 제어를 위한 속도기반 Dijkstra 알고리즘)

  • Cheon, Seong-Kwon;Kim, Geun-Deok;Kim, Chong-Gun
    • Journal of Information Technology Services
    • /
    • v.10 no.4
    • /
    • pp.259-268
    • /
    • 2011
  • A robot education system by emulation based on Web can be efficiently used for understanding concept of robot assembly practice and control mechanism of robot by control programming. It is important to predict the path of the line tracer robot which has to be decided by the robot. Shortest Path Algorithm is a well known algorithm which searches the most efficient path between the start node and the end node. There are two related typical algorithms. Dijkstra Algorithm searches the shortest path tree from a node to the rest of the other nodes. $A^*$ Algorithm searches the shortest paths among all nodes. The delay time caused by turning the direction of navigation for the line tracer robot at the crossroads can give big differences to the travel time of the robot. So we need an efficient path determine algorithm which can solve this problem. Thus, It is necessary to analyze the overhead of changing direction of robot at multi-linked node to determine the next direction for efficient routings. In this paper, we reflect the real delay time of directional changing from the real robot. A speed based Dijkstra algorithm is proposed and compared with the previous ones to analyze the performance.

Partitioning Interwell Tracer Test for NAPL Source Characterization: A General Overview

  • Lee, Tony R.;A. Lynn Wood;Jeong, Seung-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.159-162
    • /
    • 2002
  • Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT is a simultaneous displacement of partitioning and non-partitioning tracers through a subsurface formation. Partitioning tracers will partition into the NAPL during their transport through NAPL-contaminated formations. Mean travel times of partitioning and non-partitioning tracers are used to estimate the quantity of NAPL encountered by the displaced tracer pulse. Travel times are directly proportional to the partitioning coefficient and the volume of NAPL contacted in the subsurface environment. This paper discusses the conceptual background, design and implementation of PITTs. (This document has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.)

  • PDF