• 제목/요약/키워드: Toxicogenomics

검색결과 308건 처리시간 0.024초

Gene Expression of Osteosarcoma Cells on Various Coated Titanium Materials

  • Sohn, Sung-Hwa;Lee, Jae-Bun;Kim, Ki-Nam;Kim, In-Kyoung;Lee, Seung-Ho;Kim, Hye-Won;Seo, Sang-Hui;Kim, Yu-Ri;Shin, Sang-Wan;Ryu, Jae-Jun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.36-45
    • /
    • 2007
  • Several features of the implant surface, such as topography, roughness, and composition play a relevant role in implant integration with bone. This study was conducted in order to determine the effects of different-coatings on Ti surfaces on the biological responses of a human osteoblast-like cell line (MG63). MG63 cells were cultured on HA (Hydroxyapatite coating on Titanium), Ano (HA coating on anodized surface Titanium), Zr (zirconium-coating on Titanium), and control (non-coating on Titanium). The morphology of these cells was assessed by SEM. The cDNAs prepared from the total RNAs of the MG63 were hybridized into a human cDNA microarray (1,152 elements). The appearances of the surfaces observed by SEM were different on each of the three dental substrate types. MG63 cells cultured on HA, Ano, Zr, and control exhibited cell-matrix interactions. In the expression of several genes were up-, and down-regulated on the different surfaces. The attachment and expression of key osteogenic regulatory genes were enhanced by the surface morphology of the dental materials used.

Endocrine Disrupting Organotin Compounds are Potent Inducers of Imposex in Gastropods and Adipogenesis in Vertebrates

  • Iguchi, Taisen;Katsu, Yoshinao;Horiguchi, Toshihiro;Watanabe, Hajime;Blumberg, Bruce;Ohta, Yasuhiko
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The persistent and ubiquitous environmental contaminant, tributyltin chloride (TBT), induces not only imposex in gastropods but also the differentiation of adipocytes in vitro and increases adipose mass in vivo in vertebrates. TBT is a nanomolar affinity ligand for retinoid X receptor (RXR) in the rock shell(Thais clavigera) and for both the RXR and the peroxisome proliferator activated receptor $\gamma(PPAR\gamma)$ in the amphibian (Xenopus laevis), mouse, and human. The molecular mechanisms underlying induction of imposex by TBT have not been clarified, though several hypotheses are proposed. TBT promotes adipogenesis in the murine 3T3-L1 cell model and perturbs key regulators of adipogenesis and lipogenic pathways in vivo primarily through activation of RXR and $PPAR\gamma$. Moreover, in utero exposure to TBT leads to strikingly elevated lipid accumulation in adipose depots, liver, and testis of neonate mice and results in increased adipose mass in adults. In X. laevis, ectopic adipocytes form in and around gonadal tissues following organotin, RXR or $PPAR\gamma$ ligand exposure. TBT represents the first example of an environmental endocrine disrupter that promotes adverse effects from gastropods to mammals.

Forward Gene Mutation Assay of Seven Benzophenone-type UV Filters using L5178Y Mouse Lymphoma Cell

  • Jeon, Hee-Kyung;Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.23-30
    • /
    • 2007
  • The effects of high energy short wave solar radiation on human skin have received much publicity as the major cause of accelerated skin ageing and of skin cancers. To meet public demand, the cosmetic industry has developed sun protection factor products, which contain a variety of so-called "UV filters", among others benzophenone (BP) and its metabolites are the widely used UV filters. UV filters are also used to prevent UV light from damaging scents and colors in a variety of cosmetics products and to protect of plastic products against light-induced degradation. There are many variants of BP in use. In this respect, to regulate and to evaluate the hazardous effect of BP-type UV filters will be important to environment and human health. The genotoxicity of 7 BP-type UV filters was evaluated in L5178Y $(tk^{+/-})$ mouse lymphoma cells in vitro. BP, benzhydrol, 4-hydroxybenzophenone 2-hydroxy-4-methoxybenzophenone and 2, 4-dihydroxybenzophenone did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 2, 2'-Dihydroxy-4-methoxybenzophenone appeared the positive results at the highest dose, i.e. 120.4 ${\mu}g/mL$ only in the absence of metabolic activation system. And also, 2, 3, 4-trihydroxybenzophenone revealed a significant increase of mutation frequencies in the range of 138.1-207.2 ${\mu}g/mL$ in the absence of metabolic activation system and 118.3-354.8 ${\mu}g/mL$ in the presence of metabolic activation system. Through the results of MLA with 7 BP-type UV filters in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these BP-type UV filters.

Genotoxicity Study of Dimethyl Isophthalate in Bacterial and Mammalian Cell System

  • Chung, Young-Shin;Choi, Seon-A;Hong, Eun-Kyung;Ryu, Jae-Chun;Lee, Eun-Jung;Choi, Kyung-Hee
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.53-59
    • /
    • 2007
  • This study was conducted to evaluate the mutagenic potential of dimethyl isophthalate (DMIP) using Ames bacterial reverse mutation test, chromosomal aberration test and mouse lymphoma $tk^{+/-}$ gene assay. As results, in Ames bacterial reversion assay, DMIP was tested up to the concentration of 5,000 ${\mu}g$/plate and did not induce mutagenicity in Salmonella typhimurium strains TA98, TA100, TA1535 and TA1537, and Escherichia coli WP2uvrA with or without metabolic activation (S9 mix). Using cytotoxicity test, the maximal doses of DMIP for chromosomal aberration assay were determined at 1,250 ${\mu}g/mL$, which was a minimum precipitation concentration ($IC_{50}>1,940\;{\mu}g/mL$ or 10 mM) and at 155 ${\mu}g/mL$ ($IC_{50}:155\;{\mu}g/mL$) in the presence and the absence, respectively, of S9 mix. DMIP in the presence of S9 mix induced statistically significant (P<0.001) increases in the number of cells with chromosome aberrations at the dose levels of over 250 ${\mu}g/mL$, when compared with the negative control. However, DMIP in the absence of S9 mix did not caused significant induction in chromosomal aberrant cells. In MLA, DMIP at the dose range of 242.5-1,940 ${\mu}g/mL$ in the presence of S9 mix induced statistically significant increases in mutation frequencies related to small colony growth, whereas any significant mutation frequency was not observed in absence of S9 mix. From these results, it is conclusively suggested that dimethyl isophthalate may be a clastogen rather than a point mutagen.

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

Identification of Hepatotoxicity Related Genes Induced by Hexachlorobenzne (HCB) in Human Hepatocellular Carcinoma (HepG2) Cells

  • Kim, Youn-Jung;Choi, Han-Saem;Song, Mee;Song, Mi-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.179-186
    • /
    • 2009
  • Hexachlorobenzene (HCB) is a bioaccumulative, persistent, and toxic pollutant. HCB is one of the 12 priority of Persistent Organic Pollutants (POPs) intended for global action by the United Nations Environment Program (UNEP) Governing Council. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes. Some of HCB is ubiquitous in air, water, soil, and biological matrices, as well as in major environmental compartments. HCB has effects on various organs such as thyroid, bone, skin, kidneys and blood cells and especially, revealed strong toxicity to liver. In this study, we identified genes related to hepatotoxiciy induced by HCB in human hepatocellular carcinoma (HepG2) cells using microarray and gene ontology (GO) analysis. Through microarray analysis, we identified 96 up- and 617 down-regulated genes changed by more than 1.5-fold by HCB. And after GO analysis, we determined several key pathways which known as related to hepatotoxicity such as metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, and tight junction. Thus, our present study suggests that genes expressed by HCB may provide a clue for hepatotoxic mechanism of HCB and gene expression profiling by toxicogenomic analysis also affords promising opportunities to reveal potential new mechanistic markers of toxicity.

Genotoxicity Assessment of Gardenia Yellow using Short-term Assays

  • Chung, Young-Shin;Eum, Ki-Hwan;Ahn, Jun-Ho;Choi, Seon-A;Noh, Hong-June;Seo, Young-R.;Oh, Se-Wook;Lee, Michael
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.257-264
    • /
    • 2009
  • Gardenia yellow, extracted from gardenia fruit, has been widely used as a coloring agent for foods, and thus, safety of its usage is of prime importance. In the current study, short-term genotoxicity assays were conducted to evaluate the potential genotoxic effects of gardenia yellow. The gardenia yellow used was found to contain 0.057 mg/g of genipin, a known biologically active compound of the gardenia fruit extract. Ames test did not reveal any positive results. No clastogenicity was detected by a chromosomal aberration test, even on evaluation at the highest feasible concentration of gardenia yellow. Gardenia yellow was also shown to be non-genotoxic using an in vitro comet assay and a micronucleus test with L5178Y cells, although a marginal increase in DNA damage and micronuclei frequency was reported in the respective assays. Additionally, in vivo micronucleus test results clearly demonstrated that oral administration of gardenia yellow did not induce micronuclei formation in the bone marrow cells of male ICR mice. Taken together, our results indicate that gardenia yellow is not mutagenic to bacterial cells, and that it does not cause chromosomal damage in mammalian cells, either in vitro or in vivo.

Upregulation of Heme Oxygenase-1 as an Adaptive Mechanism against Acrolein in RAW 264.7 Macrophages

  • Lee, Nam-Ju;Lee, Seung-Eun;Park, Cheung-Seog;Ahn, Hyun-Jong;Ahn, Kyu-Jeung;Park, Yong-Seek
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.230-236
    • /
    • 2009
  • Acrolein, a known toxin in cigarette smoke, is the most abundant electrophilic $\alpha$, $\beta$-unsaturated aldehyde to which humans are exposed in a variety of environmental pollutants, and is also product of lipid peroxidation. Increased unsaturated aldehyde levels and reduced antioxidant status plays a major role in the pathogenesis of various diseases such as diabetes, Alzheimer's and atherosclerosis. The findings reported here show that low concentrations of acrolein induce heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophages. HO-1 induction by acrolein and signal pathways was measured using reverse transcription-polymerase chain reaction, Western blot and immunofluorescence staining analyses. Inhibition of extracellular signal-regulated kinase activity significantly attenuated the induction of HO-1 protein by acrolein, while suppression of Jun N-terminal kinase and p38 activity did not affect induction of HO-1 expression. Moreover, rottlerin, an inhibitor of protein kinase $\delta$, suppressed the upregulation of HO-1 protein production, possibly involving the interaction of NF-E2-related factor 2 (Nrf2), which has a key role as a HO-1 transcription factor. Acrolein elevated the nuclear translocation of Nrf2 in nuclear extraction. The results suggest that RAW 264.7 may protect against acrolein-mediated cellular damage via the upregulation of HO-1, which is an adaptive response to oxidative stress.

The Effect of CYP Polymorphism on Resistance against Praziquantel in Clonorchis Sinensis-infected Patients

  • Kim, Chung-Hyeon;Choi, Min-Ho;Chae, Jong-Il;Shin, Eun-Hee;Hong, Sung-Tae
    • Molecular & Cellular Toxicology
    • /
    • 제3권3호
    • /
    • pp.195-197
    • /
    • 2007
  • Currently praziquantel is used for treatment of not only clonorchiasis but also other trematodes and cestodes. But cure rate of praziquantel is just 60-80% for most trematodes. It needs for the treatment-failed patients to have more drugs. The cause of failure of treatment is not studied. We just know that the blood level of praziquantel is severely different among the people. We guess that this factor may influence the results of treatment. In an endemic area of human clonorchiasis in Heilongjiang Providence, China, 78 subjects were selected for the study. Three doses of 25 mg/kg (total 75 mg/kg) of praziquantel were administered to 78 clonorchiasis patients. After three weeks of treatment, stool examination was undertaken once again to confirm the cured and uncured subjects. To analyze SNP (single nucleotide polymorphism) of CYP3A5 PS2-1, CYP3A5 PS2-2, and CYP3A5*6, PCR method was done with specifically designed primers. The mutation rates of all sites were not significant statistically. The number of subjects was too small, so we need more subjects and other delivery proteins of bile ducts (ex. MRP etc.) were also considered for effects of praziquantel. We analyzed, for the first time, the entire CYP3A5 gene in a French population, using a polymerase chain reaction- single strand conformational polymorphism (PCR-SSCP) strategy.

산화알루미늄 나노물질이 랫드의 대뇌와 신장에 미치는 영향 (Toxic Effects of Alumina Nanoparticles in Rat Cerebrums and Kidneys)

  • 조은혜;서균백;김현미;최경희;권정택;김필제;엄익춘
    • 한국환경보건학회지
    • /
    • 제42권1호
    • /
    • pp.27-33
    • /
    • 2016
  • Objectives: Alumina nanoparticles ($Al_2O_3$, Al-NPs) are used for various purposes, including as coating agents and paint additives. Their potential toxicity has raised concern for human health. This study focuses on exploring the toxic effects on the brain and kidneys caused by Al-NPs exposure in rats. Methods: The animals were orally administered Al-NPs at 10, 50 and 100 mg/kg body weight for 28 days following OECD TG 407. To determine the targeted toxicity of Al-NPs, histopathological examination and gene expression analysis were conducted on the rats. Results: The Al-NPs treatment induced kidney tubular dilatation. In the rat cerebrums, the expression levels of 126 genes experienced two-fold or greater increases in response to Al-NPs, including other genes encoding proteins involved in cell differentiation, transcription and signal transduction. In the rat kidneys, the expression levels of 152 genes also showed two-fold or greater increases in response to Al-NPs, including other genes encoding proteins involved in apoptosis, transcription and signal transduction. Conclusion: These results suggest that exposure to Al-NPs influences cellular signal pathways of kidney and cerebrum, and it can be a toxic indicators of nanometrials.