References
- Shah, A. K. et al. High-resolution morphometric analysis of human osteoblastic cell adhesion on clinically relevant orthopedic alloys. Bone 24(5):499-506 (1999) https://doi.org/10.1016/S8756-3282(99)00077-0
- Cooper, L. F. et al. Incipient analysis of mesenchymal stem-cell-derived osteogenesis. J. Dent. Res. 80(1):314-320 (2001) https://doi.org/10.1177/00220345010800010401
- Carinci, F. et al. Titanium-cell interaction: analysis of gene expression profiling. J. Biomed. Mater. Res. 66B(1):341-346 (2003) https://doi.org/10.1002/jbm.b.10021
- Viornery, C. et al. Osteoblast culture on polished titanium disks modified with phosphonic acids. J. Biomed. Mater. Res. 62(1):149-155 (2002) https://doi.org/10.1002/jbm.10205
- Kim, H. K., Jang, J. W. & Lee, C. H. Surface modification of implant materials and its effect on attachment and proliferation of bone cells. J. Mater. Sci. Mater. Med. 15(7):825-830 (2004) https://doi.org/10.1023/B:JMSM.0000032824.62866.a1
- Ogawa, T., Sukotjo, C. & Nishimura, I. Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness. J. Prosthodont. 11(4): 241-247 (2002) https://doi.org/10.1053/jopr.2002.129772
- Schneider, G. B. et al. Implant surface roughness affects osteoblast gene expression. J. Dent. Res. 82(5): 372-376 (2003) https://doi.org/10.1177/154405910308200509
- Carinci, F. et al. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials 25(2):215-228 (2004) https://doi.org/10.1016/S0142-9612(03)00486-1
- Orsini, G. et al. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int. J. Oral. Maxillofac. Implants 15(6):779-784 (2000)
- Son, W. W. et al. In vivo histological response to anodized and anodized/hydrothermally treated titanium implants. J. Biomed. Mater. Res. B. Appl. Biomater. 66(2):520-525 (2003)
- Ogawa, T. & Nishimura, I. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int. J. Oral Maxillofac. Implant 18(2):200-210 (2003)
- Kim, C. S. et al. Effect of various implant coatings on biological responses in MG63 using cDNA microarray. J. Oral Rehabil. 33:368-379 (2006) https://doi.org/10.1111/j.1365-2842.2005.01553.x
- Kim, C. S. et al. Gene-expression profiling of titanium -cell interaction. J. Korea Acad. Prosthdont. 43(3): 393-408 (2005)
- Sohn, S. H. et al. Biological responses in osteoblastlike cell line accoding to thin layer hydroxyapatite coatings on anodized titanium. J. Oral Rehabil. 33: 898-911 (2006) https://doi.org/10.1111/j.1365-2842.2006.01643.x
- Sohn, S. H. et al. Biological effects of different thin layer hydroxyapatite coatings on anodized titanium. Mol. Cell. Toxicol. 1(4):237-247 (2005)
- Sohn, S. H. et al. Biological effects of Ceramic-coating on titanium. Mol. Cell. Toxicol. 2(2):97-105 (2006)
- Carinci, F. et al. Analysis of osteoblast-like MG63 cells' response to a rough implant surface by means of DNA microarray. J. Oral Implantol. 29(5):215-220 (2003) https://doi.org/10.1563/1548-1336(2003)029<0215:AOOMCR>2.3.CO;2
- Hornez, J. C. et al. Multiple parameter cytotoxicity index on dental alloys and pure metals. Biomol. Eng. 19(2-6):103-117 (2002) https://doi.org/10.1016/S1389-0344(02)00017-5
- Monsees, T. K. et al. Effects of different titanium alloys and nanosize surface patterning on adhesion, differentiation, and orientation of osteoblast-like cells. Cells Tissues Organs 180(2):81-95 (2005) https://doi.org/10.1159/000086749
- Carinci, F. et al. Analysis of MG63 osteoblastic-cell response to a new nanoporous implant surface by means of a microarray technology. Clin. Oral Implants Res. 15(2):180-186 (2004) https://doi.org/10.1111/j.1600-0501.2004.00997.x
- Lossdorfer, S. et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J. Biomed. Mater. Res. 70A(3):361-369 (2004) https://doi.org/10.1002/jbm.a.30025
- Wang, E. A. et al. Purification and characterization of other distinct bone-inducing factors. Proc. Natl. Acad. Sci. USA. 85:9484-9488 (1988)
- Reddi, A. H. et al. Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev. 8: 11-20 (1997) https://doi.org/10.1016/S1359-6101(96)00049-4
- Chaudhary, L. R. Hofmeister, A. M. & Hruska, K. A. Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone 34(3): 402-411 (2004) https://doi.org/10.1016/j.bone.2003.11.014
- Mustafa, K. et al. Determining optimal surface roughness of TiO (2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin. Oral Implants Res. 12(5):515-525 (2001) https://doi.org/10.1034/j.1600-0501.2001.120513.x
- DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14(4):457-460 (1996) https://doi.org/10.1038/ng1296-457
- Vawter, M. P. et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res. Bull. 55(5):641-650 (2001) https://doi.org/10.1016/S0361-9230(01)00522-6
- Park, G. H. et al. Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray. Exp. Mol. Med. 34(3):184-193 (2002) https://doi.org/10.1038/emm.2002.27
- Tanaka, T. S. et al. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc. Natl. Acad. Sci. USA. 97(16):9127-9132 (2000)
- Eisen, M. B. et al. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 95(25):14863-14868 (1998)