Gene Expression of Osteosarcoma Cells on Various Coated Titanium Materials

  • Sohn, Sung-Hwa (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Lee, Jae-Bun (Department of Dentistry, College of Medicine, Korea University) ;
  • Kim, Ki-Nam (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Kim, In-Kyoung (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Lee, Seung-Ho (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Kim, Hye-Won (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Seo, Sang-Hui (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Kim, Yu-Ri (Department of Biochemistry & Molecular Biology, Korea University) ;
  • Shin, Sang-Wan (Department of Dentistry, College of Medicine, Korea University) ;
  • Ryu, Jae-Jun (Department of Dentistry, College of Medicine, Korea University) ;
  • Kim, Meyoung-Kon (Department of Biochemistry & Molecular Biology, Korea University)
  • Published : 2007.03.31

Abstract

Several features of the implant surface, such as topography, roughness, and composition play a relevant role in implant integration with bone. This study was conducted in order to determine the effects of different-coatings on Ti surfaces on the biological responses of a human osteoblast-like cell line (MG63). MG63 cells were cultured on HA (Hydroxyapatite coating on Titanium), Ano (HA coating on anodized surface Titanium), Zr (zirconium-coating on Titanium), and control (non-coating on Titanium). The morphology of these cells was assessed by SEM. The cDNAs prepared from the total RNAs of the MG63 were hybridized into a human cDNA microarray (1,152 elements). The appearances of the surfaces observed by SEM were different on each of the three dental substrate types. MG63 cells cultured on HA, Ano, Zr, and control exhibited cell-matrix interactions. In the expression of several genes were up-, and down-regulated on the different surfaces. The attachment and expression of key osteogenic regulatory genes were enhanced by the surface morphology of the dental materials used.

Keywords

References

  1. Shah, A. K. et al. High-resolution morphometric analysis of human osteoblastic cell adhesion on clinically relevant orthopedic alloys. Bone 24(5):499-506 (1999) https://doi.org/10.1016/S8756-3282(99)00077-0
  2. Cooper, L. F. et al. Incipient analysis of mesenchymal stem-cell-derived osteogenesis. J. Dent. Res. 80(1):314-320 (2001) https://doi.org/10.1177/00220345010800010401
  3. Carinci, F. et al. Titanium-cell interaction: analysis of gene expression profiling. J. Biomed. Mater. Res. 66B(1):341-346 (2003) https://doi.org/10.1002/jbm.b.10021
  4. Viornery, C. et al. Osteoblast culture on polished titanium disks modified with phosphonic acids. J. Biomed. Mater. Res. 62(1):149-155 (2002) https://doi.org/10.1002/jbm.10205
  5. Kim, H. K., Jang, J. W. & Lee, C. H. Surface modification of implant materials and its effect on attachment and proliferation of bone cells. J. Mater. Sci. Mater. Med. 15(7):825-830 (2004) https://doi.org/10.1023/B:JMSM.0000032824.62866.a1
  6. Ogawa, T., Sukotjo, C. & Nishimura, I. Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness. J. Prosthodont. 11(4): 241-247 (2002) https://doi.org/10.1053/jopr.2002.129772
  7. Schneider, G. B. et al. Implant surface roughness affects osteoblast gene expression. J. Dent. Res. 82(5): 372-376 (2003) https://doi.org/10.1177/154405910308200509
  8. Carinci, F. et al. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials 25(2):215-228 (2004) https://doi.org/10.1016/S0142-9612(03)00486-1
  9. Orsini, G. et al. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int. J. Oral. Maxillofac. Implants 15(6):779-784 (2000)
  10. Son, W. W. et al. In vivo histological response to anodized and anodized/hydrothermally treated titanium implants. J. Biomed. Mater. Res. B. Appl. Biomater. 66(2):520-525 (2003)
  11. Ogawa, T. & Nishimura, I. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int. J. Oral Maxillofac. Implant 18(2):200-210 (2003)
  12. Kim, C. S. et al. Effect of various implant coatings on biological responses in MG63 using cDNA microarray. J. Oral Rehabil. 33:368-379 (2006) https://doi.org/10.1111/j.1365-2842.2005.01553.x
  13. Kim, C. S. et al. Gene-expression profiling of titanium -cell interaction. J. Korea Acad. Prosthdont. 43(3): 393-408 (2005)
  14. Sohn, S. H. et al. Biological responses in osteoblastlike cell line accoding to thin layer hydroxyapatite coatings on anodized titanium. J. Oral Rehabil. 33: 898-911 (2006) https://doi.org/10.1111/j.1365-2842.2006.01643.x
  15. Sohn, S. H. et al. Biological effects of different thin layer hydroxyapatite coatings on anodized titanium. Mol. Cell. Toxicol. 1(4):237-247 (2005)
  16. Sohn, S. H. et al. Biological effects of Ceramic-coating on titanium. Mol. Cell. Toxicol. 2(2):97-105 (2006)
  17. Carinci, F. et al. Analysis of osteoblast-like MG63 cells' response to a rough implant surface by means of DNA microarray. J. Oral Implantol. 29(5):215-220 (2003) https://doi.org/10.1563/1548-1336(2003)029<0215:AOOMCR>2.3.CO;2
  18. Hornez, J. C. et al. Multiple parameter cytotoxicity index on dental alloys and pure metals. Biomol. Eng. 19(2-6):103-117 (2002) https://doi.org/10.1016/S1389-0344(02)00017-5
  19. Monsees, T. K. et al. Effects of different titanium alloys and nanosize surface patterning on adhesion, differentiation, and orientation of osteoblast-like cells. Cells Tissues Organs 180(2):81-95 (2005) https://doi.org/10.1159/000086749
  20. Carinci, F. et al. Analysis of MG63 osteoblastic-cell response to a new nanoporous implant surface by means of a microarray technology. Clin. Oral Implants Res. 15(2):180-186 (2004) https://doi.org/10.1111/j.1600-0501.2004.00997.x
  21. Lossdorfer, S. et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J. Biomed. Mater. Res. 70A(3):361-369 (2004) https://doi.org/10.1002/jbm.a.30025
  22. Wang, E. A. et al. Purification and characterization of other distinct bone-inducing factors. Proc. Natl. Acad. Sci. USA. 85:9484-9488 (1988)
  23. Reddi, A. H. et al. Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev. 8: 11-20 (1997) https://doi.org/10.1016/S1359-6101(96)00049-4
  24. Chaudhary, L. R. Hofmeister, A. M. & Hruska, K. A. Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone 34(3): 402-411 (2004) https://doi.org/10.1016/j.bone.2003.11.014
  25. Mustafa, K. et al. Determining optimal surface roughness of TiO (2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin. Oral Implants Res. 12(5):515-525 (2001) https://doi.org/10.1034/j.1600-0501.2001.120513.x
  26. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14(4):457-460 (1996) https://doi.org/10.1038/ng1296-457
  27. Vawter, M. P. et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res. Bull. 55(5):641-650 (2001) https://doi.org/10.1016/S0361-9230(01)00522-6
  28. Park, G. H. et al. Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray. Exp. Mol. Med. 34(3):184-193 (2002) https://doi.org/10.1038/emm.2002.27
  29. Tanaka, T. S. et al. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc. Natl. Acad. Sci. USA. 97(16):9127-9132 (2000)
  30. Eisen, M. B. et al. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 95(25):14863-14868 (1998)