• Title/Summary/Keyword: Toxicogenomics

Search Result 308, Processing Time 0.026 seconds

Validation of Human HazChem Array Using VOC Exposure in HL-60 Cells

  • Oh, Moon-Ju;Kim, Seung-Jun;Kim, Jun-Sub;Kim, Ji-Hoon;Park, Hye-Won;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.45-51
    • /
    • 2008
  • Volatile Organic Compounds (VOCs) have been shown to cause nervous system disorders through skin contact or respiration, and also cause foul odors even at low densities in most cases. Also, as a compound itself, VOCs are directly harmful to the environment and to the human body, and may participate in photochemical reactions in air to create secondary pollutants. In this study, HL-60 cells were treated with volatile organic compounds, including ethylbenzene and trichloroethylene, at a value of $IC_50$. Then, the in house-prepared Human HazChem arrayer was utilized in order to compare the gene expression between the two VOCs. After hybridization, 8 upregulated genes and 8 downregulated genes were discovered in the HazChem array. The upregulated genes were identified as SG15, TNFSF10, PRNP, ME1, NCOA4, SRXN1, TXNRD1, and XBP1. The downregulated genes were identified as MME, NRF1, PRARBP, CALCA, CRP, BAX, C7 or f40, and FGFR1. Such results were highly correlated with the quantitative RT-PCR results. The majority of the 16 genes were related with the characteristics of VOCs, including respiratory mechanism, apoptosis, and carcinogenesis-associated genes. Our data showed that our human HazChem array can be used to monitor hazardous materials via gene expression profiling.

Gene Expression Analysis of Anticancer Drug Induced Hepatotoxicity Using cDNA Microarray

  • Lee, Gyoung-Jae;Kim, Yang-Suk;Jung, Jin-Wook;Hwang, Seung-Yong;Park, Joon-Suk;Kang, Kyung-Sun;Lee, Yong-Soon;Chon, Man-Suk;Chon, Kum-Jin;Kang, Jong-Soo;Kim, Dong-Hyean;Park, Young-Keun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.141-149
    • /
    • 2006
  • Tamoxifen (TAM), a non-steroidal anti estrogen anticancer drug and chemopreventive agent for breast cancer, have caused cholestasis in liver. The potent hepatocarcinogenicity of this drug has been reported. Methotrexate (MTX) is dihydrofolate reductase inhibitor which interfaces with the synthesis for urine nucleotide and dTMP. And it may cause atrophy, necrosis and steatosis in liver. These two anticancer drug have well-known hepatotoxicity. So, in this study we compare the gene expression pattern of antitumor agent TAM and MTX, using the cDNA microarray. We have used 4.8 K cDNA microarray to identify hepatotoxicity-related genes in 5-week-old male Sprague-Dawley (SD) rats. Confirm the pattern of gene expression, we have used Real time PCR for targeted gene. In the case of MTX, Protease related gene (Ctse, Ctsk) and Protein kinase (Pctk 1) have shown specific expression pattern. And in the case of TAM, apoptosis related gene (Pdcd 8) and signal transduction related gene (kdr) have significantly up regulated during treatment time. Gene related with growth factor, lipid synthesis, chemokins were significantly changed. From the result of this study, the information about influence of TAM and MTX to hepatoxicity will provide.

Whole Genomic Expression Analysis of Rat Liver Epithelial Cells in Response to Phenytoin

  • Kim, Ji-Hoon;Kim, Seung-Jun;Yeon, Jong-Pil;Yeom, Hye-Jung;Jung, Jin-Wook;Oh, Moon-Ju;Park, Joon-Suk;Kang, Kyung-Sun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.120-125
    • /
    • 2006
  • Phenytoin is an anti-epileptic. It works by slowing down impulses in the brain that cause seizures. The recent microarray technology enables us to understand possible mechanisms of genes related to compounds which have toxicity in biological system. We have studied that the effect of a compound related to hepatotoxin in vitro system using a rat whole genome microarray. In this study, we have used a rat liver epithelial cell line WB-F344 and phenytoin as a hepatotoxin. WB-F344 was treated with phenytoin for 1 to 24 hours. Total RNA was isolated at times 1, 6 and 24h following treatment of phenytoin, and hybridized to the microarray containing about 22,000 rat genes. After analysis with clustering methods, we have identified a total of 1,455 differentially expressed genes during the time course. Interestingly, about 1,049 genes exhibited differential expression pattern in response to phenytoin in early time. Therefore, the identification of genes associated with phenytoin in early response may give important insights into various toxicogenomic studies in vitro system.

Toxicogenomic Effect of Liver-toxic Environmental Chemicals in Human Hepatoma Cell Line

  • Kim, Seung-Jun;Park, Hye-Won;Yu, So-Yeon;Kim, Jun-Sub;Ha, Jung-Mi;Youn, Jong-Pil;An, Yu-Ri;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • Some environmental chemicals have been shown to cause liver-toxicity as the result of bioaccumulation. Particularly, fungicides have been shown to cause varying degrees of hepatictoxicity and to disrupt steroid hormone homeostasis in in vivo models. The principal objective of this study was to evaluate the liver-toxic responses of environmental chemicals-in this case selected fungicides and parasiticides-in order to determine whether or not this agent differentially affected its toxicogenomic activities in hepatic tumor cell lines. To determine the gene expression profiles of 3 fungicides (triadimefon, myclobutanil, vinclozolin) and 1 parasiticide (dibutyl phthalate), we utilized a modified HazChem human array V2. Additionally, in order to observe the differential alterations in its time-dependent activities, we conducted two time (3 hr, 48 hr) exposures to the respective IC20 values of four chemicals. As a result, we analyzed the expression profiles of a total of 1638 genes, and we identified 70 positive significant genes and 144 negative significant genes using four fungicidic and parasiticidic chemicals, using SAM (Significant Analysis of Microarray) methods (q-value<0.5%). These genes were analyzed and identified as being related to apoptosis, stress responses, germ cell development, cofactor metabolism, and lipid metabolism in GO functions and pathways. Additionally, we found 120 genes among those time-dependently differentially expressed genes, using 1-way ANOVA (P-value<0.05). These genes were related to protein metabolism, stress responses, and positive regulation of apoptosis. These data support the conclusion that the four tested chemicals have common toxicogenomic effects and evidence respectively differential expression profiles according to exposure time.

Gene Expression Analysis of the Bromobenzene Treated Liver with Non-hepatotoxic Doses in Mice

  • Lim, Jung-Sun;Jeong, Sun-Young;Hwang, Ji-Yoon;Park, Han-Jin;Cho, Jae-Woo;Song, Chang-Woo;Kim, Yang-Seok;Lee, Wan-Seon;Moon, Jin-Hee;Han, Sang-Seop;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.268-274
    • /
    • 2005
  • Bromobenzene (BB) is well known hepatotoxicant. Also, BB is an industrial solvent that arouses toxicity predominantly in the liver where it causes centrilobular necrosis. BB is subjected to Cytochrome P450 mediated epoxidation followed by either conjugation with glutathione, enzymatic hydrolysis or further oxidation. In this study, we focused on BB-induced gene expression at non-hepatotoxic dose. Mice were exposed to two levels of BB, sampled at 24 h, and hepatic gene expression levels were determined to evaluate dose dependent changes. When examining the toxic dose of BB treated group in other previous studies, genes related to heat shock protein, oxidative stress, and drug metabolism are expressed. Compared to these results, our study, in which non-toxic dose of BB was administrated, showed similar patterns as the toxic conditions above. The purpose of the study was to select genes that showed changes in relation to the differing dose through confirmation of the difference within transcriptomic boundaries, but those that are not detected by the existing classic toxicology tools in non-hepatotoxic dose.

Toxicogenomics Study on Carbon Tetrachloride-induced Hepatotoxicity in Mice

  • Jeong, Sun-Young;Lim, Jung-Sun;Hwang, Ji-Yoon;Park, Han-Jin;Cho, Jae-Woo;Song, Chang-Woo;Kim, Yang-Seok;Lee, Wan-Seon;Moon, Jin-Hee;Han, Sang-Seop;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • Carbon tetrachloride ($CCl_4$) is well known hepatotoxicant. Its overdose cause severe centrilobular hepatic necrosis in human and experimental animals. We administered $CCl_{4}$ at low (0.2 mL/kg p.o.) and high (2 mL/kg p.o.) doses to mice. Mice were sacrificed at 24 h after administration. We evaluated liver toxicity by serum AST and ALT level and by microscopic observation. Using cDNA chip, we conducted gene expression analysis in liver. Mean serum activities of the hepatocellular leakage enzymes, ALT and AST, were significantly increased compare to control, respectively, in the low and high dose groups. H&E evaluation of stained liver sections revealed $CCl_{4}-related$ histopathological findings in mice. Moderate centrilobular hepatocellular necrosis was present in all $CCl_{4}$ treated mice. We found that gene expression pattern was very similar between low and high dose group. However, some stress related genes were differently expressed. These results could be a molecular signature for the degree of liver injury. Our data suggest that the degree of severity could be figure out by gene expression profiling.

Next Generation Technology to Minimize Ecotoxicity and to Develop the Sustainable Environment: White Biotechnology

  • Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.143-148
    • /
    • 2005
  • This review aims to show that industrial sustainable chemistry, minimizing or reducing the ecological impacts by the chemicals, is not an emerging trend, but is already a reality through the application of 'White Biotechnology' such as 'green' chemistry and engineering expertise. A large number of current industrial case studies are presented, as well as new developments from the chemical industry. The case studies cover new chemistry, new process design and new equipment. By articulating the requirements for industrial application of sustainable chemistry, this review also seeks to bridge any existing gap between academia and industry regarding the R & D and engineering challenges needed to ensure green chemistry research enables a more sustainable future chemical industry considering eco-toxicological impacts.

Proteomic Analysis of Differentially Expressed Proteins in Human Lung Cells Following Formaldehyde Treatment

  • Jeon, Yu-Mi;Ryu, Jae-Chun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.238-245
    • /
    • 2007
  • Chronic formaldehyde inhalation studies have suggested its relativity to teratogenicity, cancer incidence, neurodegenerative and vascular disorders. Many toxicological data on the formaldehyde toxicity are available, but proteomic results showing complete protein profiles are limited. Therefore, alterations of protein expression patterns upon formaldehyde treatment were investigated in the human lung epithelial cell line. Differentially expressed proteins following formaldehyde treatment were analyzed on 2-dimensional gels, and further analyzed by MALDI-TOF to identify the proteins. Among the identified proteins, 24 proteins were notably up-regulated and 6 proteins were down-regulated. In particular, cytoskeleton related protein named vinculin and Rho GDP dissociation inhibitor which plays a key role in apoptosis increased remarkably.