• Title/Summary/Keyword: Toxicity tests

Search Result 456, Processing Time 0.025 seconds

Acute Toxicity Study of DA-5018, A Non-narcotic Analgesic Agent (비 마약성 진통제 DA-5018의 급성독성시험)

  • 강경구;김동환;백남기;김원배;양주익
    • Biomolecules & Therapeutics
    • /
    • v.5 no.1
    • /
    • pp.12-22
    • /
    • 1997
  • Intravenous and oral acute toxicity tests in ICR mice and SD rats and percutaneous acute toxicity tests in SD rats and NZW rabbits were conducted to evaluate the toxicity of DA-5018 and DA-5018 cream, respectively Clinical signs observed in mice and rats after the administration of DA-5018 were similar regardless of administration route. The observed clinical signs were jumping, wild running, lacrimation, ataxia, reddening of extremities and ears, ventral or lateral recumbency, respiratory distress, cyanosis, convulsion and death. Pulmonary enlargement and hemorrhage were observed in the animals died immediately after the dosing of DA-5018. At terminal necropsy, pulmonary enlargement and hemorrhage, corneal opacity and focal scabbing and depilation around nose were seen. LD$_{50}$ Values of DA-5018 are 11.5 mg/kg (mice, male), 12.6 mg/kg (mice, female), 88.3 mg/kg (rat, male) and 73.2 mg/kg (rat, female) in oral toxicity tests and 11.0 mg/kg (mice, male), 18.7 mg/kg (mice, female), 0.12 mg/kg (rat, male) and 0.32 mg/kg (rat, female) in i.v. toxicity tests. In the percutaneous acute toxicity tests of DA-5018 cream, no deaths occured in all the tested groups during 14-day observation period. There were also no abnormalities in the general conditions, body weight changes and on necropsy findings in all groups. LD$_{50}$ values of 0.1 ~0.9% DA-5018 creams in male and female rats and rabbits are >2000 mg/kg./kg.

  • PDF

Ecotoxicity Assessment of Potassium Hydrogen Phthalate and Verification of Standard Reference Toxicity Test Method Using Potassium Hydrogen Phthalate

  • Dong Jin Choi
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Phthalates are animal carcinogens. Potassium hydrogen phthalate (KHP), which has the least complicated structure among phthalates, is used for the analysis of total organic carbon and formaldehyde. However, its toxicity has not been confirmed. A 24-hour acute toxicity test was performed using Daphnia magna, a water flea used to evaluate aquatic toxicity owing to its high sensitivity. The lowest observed effect concentration of KHP was found to be 240 mg/L. The effects of phosphorus, nitrogen, and Cr(6+), which are able to be discharged along with KHP, were also confirmed using tests. At 240 mg/L KHP, toxicity increased as phosphorus, nitrogen, and Cr(6+) increased. In addition, tests were performed to confirm the half maximal effective concentration of KHP. Through 10 test repetitions, the average ecotoxicity value was found to be 0.3, the average half maximal effective concentration was 327.75 mg/L, and the coefficient of variation (%) was 3.16%; because the latter value is lower than 25%, which is what is generally suggested for the water pollution standard method, the reproducibility of the tests is sufficient to replace the existing standard reference toxicity test that uses potassium dichromate. In addition, the half maximum effective concentration of potassium hydrogen phthalate is approximately 218 times more than that of potassium dichromate; therefore, toxicity is relatively low. In conclusion, KHP is a feasible alternative to the highly toxic potassium dichromate for performing the standard reference toxicity test.

Use of Duckweed (Lemna gibba) Growth-Inhibition Test to Evaluate the Toxicity of Chromate in Korea (환경독성 평가를 위한 좀개구리밥(Lemna gibba)의 성장저해시험법에 관한 연구)

  • 김은주;이성규
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.4
    • /
    • pp.205-209
    • /
    • 2001
  • Lemna gibba was newly cultured and provided for toxicity tests. In this study, the chromate toxicity tests for Lemna gibba were performed according to the OECD Lemna growth inhibition test guideline. The test species was Lemna gibba, and the tests were repeated 5 times. To evaluate the toxicity test results, the average specific growth rate, EC50, 95% confidential limit, and variances were calculated. The test performance was analyzed by the doubling time and test statistics. The average values of EC50 data determined by logistic and linear interpolation curves were 25.9 ppm and 35.4 ppm respectively (by chromate concentration). The doubling time of all controls were below 2.5 day, so all tests passed the criteria for the test performance. This study introduced a new test method, Lemna growth inhibition test, which is provided for the hazard assessment of aquatic environment.

  • PDF

Single- and repeated-dose oral toxicity tests of deep sea water mineral extracts in ICR mice

  • Hwang, Min Hee;Cho, Miju;Lee, Dong Gun;Go, Eun Byeol;Park, Young Sig;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.227-231
    • /
    • 2016
  • Deep sea water (DSW) is located 100 to 500 m below the sea surface. DSW is widely used in various fields, and is an important source of minerals that can be used to treat mineral deficiency. In the present study, the oral toxicity of DSW-mineral extracts was determined using single-dose and 14-day repeated dose oral toxicity tests in ICR mice. For the single-dose oral toxicity tests, mineral extracts of magnesium (Mg) and calcium (Ca) at doses of 0, 6, 270, 810, and 1,350 mg/kg, respectively, were orally administered to mice once at the beginning of the experiment, and the mice were observed for 14 days. For the 14-day repeated dose oral toxicity tests, Mg and Ca mineral extracts at doses of 0, 3, 135, 405, 675 mg/kg, respectively, were orally administered to mice daily, and the mice were observed for 14 days. Various tests were performed including visual observation; analysis of relative organ weight, food intake, and organ weight; biochemical analysis, and histopathology. The results indicated that mortality and changes in appearance were not observed among differentially administered groups of male and female ICR mice during the experimental period. Differences in body weight gain, food intake, organ weight, and histopathology parameters were not significant between the control and mineral-administered groups. Some results of the biochemical analyses were significantly different, but showed no specific tendencies. Overall, no evidence of toxicity was observed from the oral administration of DSW extracts of Ca and Mg in ICR mice.

Acute and Subacute Toxicity Study of Artemisia asistica Nakai Aqua-acupuncture Solution in Mice (애엽(艾葉) 약침액(藥鍼液)의 급성(急性)·아급성(亞急性) 독성(毒性)에 관한 연구(硏究))

  • Youn, Seong-Muk;Lim, Jong-Kook
    • Journal of Acupuncture Research
    • /
    • v.17 no.1
    • /
    • pp.143-151
    • /
    • 2000
  • Acute and subacute toxicity of Artemisia asistica Nakai Aqua-acupuncture Solution (ANAS) were studied in ICR mice. In acute toxicity test, mice were injected intraperitoneally with single dose of $1{\times}$, $5{\times}$, $10{\times}$ ANAS, and toxicological responeses were observed for consecutive 14 days. Mortality, body weight changes, organ weight, and serum chemistry were performed. The mortality and body weight changes of mice treated with $1{\times}$ and $5{\times}$ ANAS were not affected during the experimental periods. With the $10{\times}$ ANAS treatment, there were dead animals and changes of body weight, organ weight and serum biochemical values were observed during the experimental period. In subacute toxicity test, mice were injected intraperitoneally with doses of $1{\times}$, $10{\times}$ ANAS for 14 days. No difference was found between control and $1{\times}$ ANAS treated group in mortality, changes of body weight and organ weight, and serum biochemical values. However, Dead animals, changes of body weight and organ weight, and increased serum biochemical values were observed with $10{\times}$ ANAS treated groups. These results suggest that $1{\times}$ ANAS causes no toxicity in acute and subacute toxicity tests. However $10{\times}$ ANAS causes toxicity in both tests.

  • PDF

Toxicity Monitoring of River Sediments in the Geum River Basin using Daphnia magna and Moina macrocopa (Daphnia magna와 Moina macrocopa를 이용한 금강수계 하천퇴적물 생태독성 모니터링)

  • Cho, Hyeyoon;Yoo, Jisu;Han, Youngseok;Han, Taejun;Kim, Sanghun;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1000-1007
    • /
    • 2010
  • In this study, toxicity monitoring of sediments collected from 25 stations in the Geum river basin was conducted using Daphnia magna and Moina macrocopa. According to the results of acute toxicity tests (immobilization and mortality) of organic extracts of semdiments, Miho stream showed much less toxicity than Gap and Nonsan streams. In particular, significant toxicity was observed in both species for St.15 and St.16 sediment samples that passed through Deajeon city as a branch of Gap stream. For Nonsan stream, St.23 sediment showed high toxicity toward M. macrocopa. This site seemed to be affected by upper agricultural industrial complex. Additionally, M. macrocopa showed a higher sensitivity than D. magna for organic extracts of sediments. In the case of toxicity tests using sediment pore water and aqueous extracts, only pore water of St.27 sediment was toxic against D. magna. Toxicity identification evaluation showed that hydrogen sulfide was likely a major toxicant in the pore water.

Toxicity characteristics of sewage treatment effluents and potential contribution of micropollutant residuals

  • Kim, Younghee;Farnazo, Danvir Mark
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.318-327
    • /
    • 2017
  • Background: A typical sewage treatment plant is designed for organic and nutrient removal from municipal sewage water and not targeted to eliminate micropollutants such as pesticides, pharmaceuticals, and nano-sized metals which become a big concern for sustainable human and ecological system and are mainly discharged from sewage treatment plant. Therefore, despite contaminant removal by wastewater treatment processes, there are still remaining environmental risks by untreated pollutants in STP (sewage treatment plant) effluents. This study performed aquatic toxicity tests of raw wastewater and treated effluents in two sewage treatment plants to evaluate toxicity reduction by wastewater treatment process and analyze concentration of contaminants to reveal potential toxic factors in STP effluents. Methods: Water samples were collected from each treatment steps of two STPs, and acute and chronic toxicity tests were conducted following USEPA (United States Environmental Protection Agency) and OECD (Organization for Economic Cooperation and Development) guidelines. Endpoints were immobility for mortality and reproduction effect for estrogenicity. Results: Acute $EC_{50}s$ (median effective concentration) of influents for Seungki (SK) and Jungnang (JN) STPs are $54.13{\pm}32.64%$ and $30.38{\pm}24.96%$, respectively, and reduced to $96.49{\pm}7.84%$ and 100%. Acute toxicity reduction was clearly correlated with SS (suspended solids) concentration because of filter feeding characteristics of test organisms. Chronic toxicity tests revealed that lethal effect was reduced and low concentration of influents showed higher number of neonates. However, toxicity reduction was not related to nutrient removal. Fecundity effect positively increased in treated wastewater compared to that in raw wastewater, and no significant differences were observed compared to the control group in JN final effluent implying potential effects of estrogenic compounds in the STP effluents. Conclusions: Conventional wastewater treatment process reduced some organics and nutritional compounds from wastewater, and it results in toxicity reduction in lethal effect and positive reproductive effect but not showing correlation. Unknown estrogenic compounds could be a reason causing the increase of brood size. This study suggests that pharmaceutical residues and nanoparticles in STP effluents are one of the major micropollutants and underline as one of estrogenic effect factors.

Assessment of Korean Water Quality Standards for Effluent Discharged from the Dye Industry Based on Acute Aquatic Toxicity Tests Using Microbes and Macroinvertebrates (염색폐수의 수질독성시험을 이용한 한국의 수질배출허용기준 평가연구)

  • Kim, Young-Hee;Lee, Min-Jung;Choi, Kyung-Ho;Eo, Soo-Mi;Lee, Hong-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • Acute aquatic toxicity of effluents discharged from five dyeing plants in Gyeong-gi province were evaluated to assess whether the current Korean water quality standards(KWQS) could protect aquatic life. Chemical analyses of all parameters regulated under KWQS, except for E-coli, were also carried out to determine regulation compliance of the samples. All the effluent samples were satisfied with KWQS except for the color in only one sample. In acute Daphnia magna toxicity tests, significant mortality was observed in one of five samples and EC50 was 12.1%(95% confidence interval 9.1-16.2), which was in compliance with KWQS. The result of the Microtox assay indicated that acute microbial toxicity existed in effluents from three out of five plants, two of which were in compliance with KWQS. The agreement between regulation compliance of chemical concentrations of effluent and observed toxicity from various biological toxicity tests was very poor to fair (kappa = 0.194~0.250). The data presented suggest that exposure to dyeing wastewater which were in compliance with Korean water quality standards may not be safe to aquatic biota, and multiple tropical levels should be considered in aquatic toxicity monitoring of dyeing industry.

Comparison of Acute Toxicity of Different Groups of Pesticides to Honey Bee Workers(Apis Mellifera L.)

  • Ulziibayar, Delgermaa;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.34 no.4
    • /
    • pp.305-313
    • /
    • 2019
  • Honey bees (Apis mellifera) forage in agricultural areas, and are exposed to diverse pesticide poisoning. Toxic effects on Apis mellifera of different groups of pesticides were tested in the laboratory; fungicide (Metconazole), herbicide (Glyphosate), acaricide (Amitraz), organophosphate insecticide(Fenitrothion) and neonicotinoid insecticides(Thiacloprid, Thiamethoxam, Imidacloprid, Acetamiprid, Dinotefuran and Clothianidin). Commercial formulations were serially diluted from the recommended concentration (RC) to 10-6 times to carry out feeding and contact tests. Toxicity was transformed into lethal dose (LD50) and hazard question (HQ). The acute toxicity of pesticides showed similar patterns between feeding and contact tests. But feeding tests showed greater toxic to honey bee than contact test. The organophosphate and nitro-neonicotinoid insecticides were highly toxic with HQ values ranging greater than 1. However, cyano-neonicotinoids of Thiacloprid and Acetamiprid showed low toxicity. Even at the RC, 24 hr mortalities were 18 and 30%. The acaricide (Amitraz) showed intermediate level of toxicity at RC but negligible at the concentration lower than 10-1 times. A fungicide(Metconazole) and herbicide(Glyphosate) showed minimal impacts. The results imply that the selective use of pesticides could help conservation of pollinators in agricultural production systems.

Ring Test as Acute Toxicity Test with Korean Freshwater Shrimp, Neocaridina denticulata using 3,4-Dichloroaniline (국내 서식 담수새우 새뱅이(Neocaridina denticulata)를 이용한 3,4-Dichloroaniline의 급성독성 교차시험(Ring test))

  • Shin, Yu-jin;Lee, Jae-woo;Kim, Jieun;Cho, Jaegu;Kim, Ja-Hyun;Kang, Minho;Kim, Kyungtae;Kim, Pil-je;Park, Kyunghwa
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.3
    • /
    • pp.285-294
    • /
    • 2019
  • Objectives: For suitable risk management of the domestic aquatic environment, it is necessary to conduct toxicity tests using species native to Korea. In the present study, we performed toxicity ring tests using endemic freshwater arthropoda Neocaridina denticulata and evaluated its validity and reproducibility as an international standard test species. Methods: To evaluate the sensitivity levels of N. denticulata to hazardous chemicals, toxicity values for several chemicals were compared with other standard test species. Intra- and inter-laboratory acute toxicity tests were performed both within a single laboratory and among four laboratories respectively using 3,4-Dichloroaniline, which is generally used as a reference test substance in fish toxicity tests. In addition, intra- and inter-laboratory coefficient of variations (CVs) were calculated to evaluate reproducibility based on the estimated toxicity values. Results: The sensitivity of N. denticulata to several chemicals was found to be similar with D. manga, indicating that the species is valid as a test species. The CVs of the intra- and inter-laboratory tests were 22.946% with four qualified runs and 8.828% among the four laboratories, respectively. Conclusions: N. denticulata serves in an important role in the food chain of Korean aquatic ecosystems and also inhabits several other Asian countries. Since the validity and reproducibility of the species were confirmed as a toxicity test species in this study, further efforts are needed to establish N. denticulata as the international standard test species for the appropriate risk assessment of aquatic ecosystems at home and abroad.