• Title/Summary/Keyword: Toxicity assessment

Search Result 649, Processing Time 0.03 seconds

IARC Carcinogenicity Assessment for 2-Bromopropane: 28 Years after Outbreak of Reproductive Toxicity (집단생식독성 발생 28년 후 원인물질 2-bromopropane에 대한 IARC 발암성평가)

  • Il Je Yu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.1
    • /
    • pp.1-2
    • /
    • 2023
  • 2-Bromopropane, a causative chemical that caused the outbreak of reproductive toxicity 28 years ago, was classified as Group 2A in the recently held IARC monograph 133 meeting. Korean research data were used as supporting data in the carcinogenicity evaluation of 2-bromopropane and other carcinogens. I would like to share my memories with the researchers at the Occupational Safety and Health Research Institute who worked hard to identify the cause.

Comparative Study of Exposure Potential and Toxicity Factors used in Chemical Ranking and Scoring System (화학물질 우선순위선정 시스템에서 고려되는 노출.독성인자 비교연구)

  • An, Youn-Joo;Jeong, Seung-Woo;Kim, Min-Jin;Yang, Chang-Yong
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Chemical Ranking and Scoring (CRS) system is a useful tool to screen priority chemicals of large body of substances. The relative ranking of chemicals based on CRS system has served as a decision-making support tools. Exposure potential and toxicity are significant parameters in CRS system, and there are differences in evaluating those parameters in each CRS system. In this study, the parameters of exposure potential, human toxicity, and ecotoxicity were extensively compared. In addition the scoring methods in each parameter were analyzed. The CRS systems considered in this study include the CHEMS-1 (Chemical Hazard Evaluation for Management Strategies), SCRAM (Scoring and Ranking Assessment Model), EURAM (European Union Risk Ranking Method), ARET (Accelerated Reduction/Elimination of Toxics), and CRS-Korea. An comparative analysis of the several CRS systems is presented based on their assessment parameters and scoring methods.

Ecotoxicity Assessment of Potassium Hydrogen Phthalate and Verification of Standard Reference Toxicity Test Method Using Potassium Hydrogen Phthalate

  • Dong Jin Choi
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Phthalates are animal carcinogens. Potassium hydrogen phthalate (KHP), which has the least complicated structure among phthalates, is used for the analysis of total organic carbon and formaldehyde. However, its toxicity has not been confirmed. A 24-hour acute toxicity test was performed using Daphnia magna, a water flea used to evaluate aquatic toxicity owing to its high sensitivity. The lowest observed effect concentration of KHP was found to be 240 mg/L. The effects of phosphorus, nitrogen, and Cr(6+), which are able to be discharged along with KHP, were also confirmed using tests. At 240 mg/L KHP, toxicity increased as phosphorus, nitrogen, and Cr(6+) increased. In addition, tests were performed to confirm the half maximal effective concentration of KHP. Through 10 test repetitions, the average ecotoxicity value was found to be 0.3, the average half maximal effective concentration was 327.75 mg/L, and the coefficient of variation (%) was 3.16%; because the latter value is lower than 25%, which is what is generally suggested for the water pollution standard method, the reproducibility of the tests is sufficient to replace the existing standard reference toxicity test that uses potassium dichromate. In addition, the half maximum effective concentration of potassium hydrogen phthalate is approximately 218 times more than that of potassium dichromate; therefore, toxicity is relatively low. In conclusion, KHP is a feasible alternative to the highly toxic potassium dichromate for performing the standard reference toxicity test.

Domestic Test Species for Aquatic Toxicity Assessment in Korea (수생태계 독성평가에 적용 가능한 국내 시험종 선정)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • The use of aquatic species in ecotoxicity research is well established in developed countries. However, there are limitations of using the species that are not native to Korea, and the toxicity data produced by domestic test species are significantly needed to reflect the domestic situation. The purpose of this study was to investigate the domestic species that can be applicable for the aquatic toxicity assessment in Korea. Aquatic toxicity data were collected in the framework of the project 'Development of integrated methodology for evaluation of water environment' to obtain a range of test species used for aquatic toxicity assessment internationally. The test species collected were evaluated in terms of domestic distribution based on the reliable references and the advices of experts. We figured out the 71 test species native to Korea. They included 7 fish, 26 invertebrates (2 annelids, 2 bryozoa, 13 crustaceans, 3 insects, 4 mollusc, 1 platyhelminth, and 1 protozoan), 26 plants (9 diatoms, 14 green algae, 3 macrophytes), and 12 others (2 amphibians, 3 bacteria, 6 blue-green algae, and 1 fungus). The result of this study should be a very useful information for ecotoxicity assessment in aquatic ecosystem, especially in choosing the test species applicable for the ecotoxicity in Korea hereafter.

Toxicity Assessment of the Soil by Bioassay Following a Long-Term Application of Sewage Sludge (생물검정법을 이용한 하수슬러지 장기연용 토양의 독성평가)

  • Nam, Jae-Jak;Lee, Seung-Hwan;Kwon, Soon-Ik;Hong, Suk-Young;Lim, Dong-Kyu;Koh, Mun-Hwan;Song, Beom-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.258-263
    • /
    • 2004
  • Bioassay was employed to assess toxicity of soil which had been treated with sewage sludges for seven years. The $Microtox^{(R)}$ and root elongation test of lettuce (Lactuca Sativa.) elucidated that the intensity of soil toxicity was closely related with the types and amount of sewage sludges applied. Both bioassay methods proved to be useful in an assessment of soil toxicity and were consistent to some extent with the conventional chemical analysis methods. $EC_{50}$ values resulted from $Microtox^{(R)}$ were highly correlated with concentration of heavy metals in soils amended with sewage sludges : Cu ($r^2=\;0.86^{**}$), Cr ($r^2\;=\;0.84^{**}$), Ni ($r^2\;=\;0.83^{**}$), and Zn ($r^2\;=\;0.69^{**}$). This demonstrated that both bioassay techniques could be employed as tools for soil toxicity assessment when the soil was exposed to solid wastes such as sewage sludge.

Chromosome Aberration and Sister Chromatid Exchange for the Assessment of Cadmium Toxicity (카드뮴독성을 평가하기 위한 방법으로서의 염색체 이상 및 자매염색체 교환)

  • 맹승희;정해원
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.110-119
    • /
    • 1991
  • This study was performed to investigate the applicability of 9 chromosome aberration and sister chromatid exchange analysis for the assessment of cytotoxicity and cytogenetic effects of cadmium. Induction of chromosome aberration and sister chromatid exchange in CHO-K1 cells and human peripheral lymphocytes by 2 hour-treatment of CdCl$_{2}$ with various concentrations was observed in relation to their frequencies and types of aberration. The frequency of chromosome aberration in CHO cells treated with CdCl$+{2}$ at G$_{1}$ was increased with dose-dependent manner. When human peripheral lymphocytes were treated with cadmium at G0 and harvested at 72 hours there after, the response was dose-dependent and all the aberrations were also chromatid types. There was no significant increase in frequencies of sister chromatid exchange in both CHO cells and human lymphocytes treated with different concentrations of cadmium. It was suggested that SCE analysis was not a good assessment method for cadmium toxicity.

  • PDF

Risk assessment of di(2-ethylhexyl) phthalate in the workplace

  • Kim, Hyeon-Yeong
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.11.1-11.6
    • /
    • 2016
  • Objectives A hazard assessment of di(2-ethylhexyl) phthalate (DEHP), a commonly used workplace chemical, was conducted in order to protect the occupational health of workers. A literature review, consisting of both domestic and international references, examined the chemical management system, working environment, level of exposure, and possible associated risks. This information may be utilized in the future to determine appropriate exposure levels in working environments. Methods Hazard assessment was performed using chemical hazard information obtained from international agencies, such as Organization for Economic Cooperation and Development-generated Screening Information Data Set and International Program on Chemical Safety. Information was obtained from surveys conducted by the Minister of Employment and Labor ("Survey on the work environment") and by the Ministry of Environment ("Survey on the circulation amount of chemicals"). Risk was determined according to exposure in workplaces and chemical hazard. Results In 229 workplaces over the country, 831 tons of DEHP have been used as plasticizers, insecticides, and ink solvent. Calculated 50% lethal dose values ranged from 14.2 to 50 g/kg, as determined via acute toxicity testing in rodents. Chronic carcinogenicity tests revealed cases of lung and liver degeneration, shrinkage of the testes, and liver cancer. The no-observed-adverse-effect level and the lowest-observed-adverse-effect level were determined to be 28.9 g/kg and 146.6 g/kg, respectively. The working environment assessment revealed the maximum exposure level to be $0.990mg/m^3$, as compared to the threshold exposure level of $5mg/m^3$. The relative risk of chronic toxicity and reproductive toxicity were 0.264 and 0.330, respectively, while the risk of carcinogenicity was 1.3, which is higher than the accepted safety value of one. Conclusions DEHP was identified as a carcinogen, and may be dangerous even at concentrations lower than the occupational exposure limit. Therefore, we suggest management of working environments, with exposure levels below $5mg/m^3$ and all workers utilizing local exhaust ventilation and respiratory protection when handling DEHP.

Acute Toxicity of Heavy Metal (Cd, Cu, Zn) on the Hatching Rates of Fertilized Eggs in the Olive Flounder (Paralichthys olivaceus) (넙치(Paralichthys olivaceus) 수정란 부화율에 대한 중금속(Cd, Cu, Zn)의 급성독성)

  • Hwang, Un-Ki;Ryu, Hyang-Mi;Kim, Seong-Gil;Park, Seung-Yoon;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.136-142
    • /
    • 2012
  • Acute toxicity test of heavy metal (Cd, Cu, Zn) were examined using the hatching rates of fertilized eggs in the oliver flounder, Paralichthys olivaceus. Eggs were exposed to Cd, Cu, Zn (0, 10, 100, 500, 1000, 2500, 5000 ppb) and then normal hatching rates were investigated after 48 h. The normal hatching rates in the control condition (not including Cd, Cu and Zn) were greater than 80%, but suddenly decreased with increasing of heavy metal concentrations. Cd, Cu and Zn reduced the normal hatching rates in concentration-dependent way and a significant reduction occurred at concentration grater than 1000, 100, 100 ppb, respectively. The ranking of heavy metal toxicity was Zn>Cu>Cd, with $EC_{50}$ values of 584, 1015 and 1282 ppb, respectively. The no-observed-effect-concentration (NOEC) and the lowest-observed-effect-concentration (LOEC) showed each 100 and 500 ppb of normal hatching rates in exposed to Cu and Zn. The NOEC and LOEC of normal hatching rates in Cd were 500 ppb and 1000 ppb, respectively. From these results, the normal hatching rates of P. olivaceus have toxic effect at greater than the 100 ppb concentrations in Cu, Zn and the 500 ppb concentrations in Cd in natural ecosystems. These results suggest that biological assay using the normal hatching rates of P. olivaceus are very useful test method for the acute toxicity assessment of a toxic substance as heavy metal in marine ecosystems.

Ecotoxicological effects of ballast water effluent teated by an electrolytic method on marine environment

  • Kim, Tae Won;Kim, Keun-Yong;Shon, Myung-Baek;Kim, Young-Soo;Lee, Ji Hyun;Moon, Chang Ho;Son, Min Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.1010-1020
    • /
    • 2014
  • Ballast water effluent treated by an electrolytic method contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for three marine pelagic organisms, i.e., diatom Skeletonema costatum, rotifer Brachionus plicatilis and fish Paralichthys olivaceus. The biological toxicity test revealed that S. costatum was the only organism that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 12.5%, 25.0% and 83.3%, respectively, at brackish water condition. In contrast, it showed insignificant toxicity at seawater condition. B. plicatilis and P. olivaceus also showed no toxicities to the effluent at the both salinity conditions. Meanwhile, chemical analysis revealed that the ballast water effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 20 DBPs including bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs) and chloropicrin. Based on ERA, the 20 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. Except monobromoacetic acid, the ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other 19 DBPs did not exceed 1. Thus, our results of WET testing and ERA indicated that the ballast water effluent treated by electrolysis and subsequently neutralization was considered to have no adverse impacts on marine environment.

Ecotoxicological Effects of NaDCC injection method in Ballast Water Management system on Marine Environments (NaDCC 주입 선박평형수 처리기술의 해양생태위해성에 대한 연구)

  • Kim, Tae won;Moon, Chang Ho;Kim, Young Ryun;Son, Min Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.236-236
    • /
    • 2017
  • Effluent treated by an NaDCC injection method in Ballast water management system (BWMS) contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for four marine pelagic and freshwater organisms, i.e., diatom Skeletonema costatum, Navicula pellicuosa, chlorophyta Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer Brachionus plicatilis, Brachionus calyciflorus and fish Cyprinodon variegatus, Pimephales promelas. The biological toxicity test revealed that algae was the only biota that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 25-50%, 50-100% and >100%, respectively, at three water condition, but did not show any significant toxicities on other biota. Meanwhile, chemical analysis revealed that the BWMS effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 25 DBPs such as bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs), chloropicrin and Isocyanuric acid. Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other DBPs did not exceed 1 for General harbor environment. However, four substances (Isocyanuric acid, Tribromomethane, Chloropicrin and Monochloroacetic acid) were exceed 1 for Nearship environment. But observed toxicity in the test water on algal growth inhibition would be mitigated by normal dilution factor of 5 applied for nearship exposure. Thus, our results of WET testing and ERA showed that the BWMS effluent treated by NaDCC injection method would have no adverse impacts on marine environment.

  • PDF