• Title/Summary/Keyword: Toxicity Sensitivity

Search Result 158, Processing Time 0.035 seconds

Acute Toxicity of Pentachlorophenol Sodium Salt, Potassium Dichromate, Sodium Azide to Neocaridina denticulata (Pentachlorophenol Sodium Salt, Potassium Dichromate, Sodium Azide에 대한 새뱅이(Neocaridina denticulata) 급성독성)

  • Lee, Jae-Woo;Moon, Ye-Ryeon;Yoon, Jun-Heon;Choi, Kyung-Hee;Han, Jin-Seok;Ryu, Ji-Sung
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.223-228
    • /
    • 2010
  • Neocaridina denticulata is a small freshwater shrimp indigenous to Korea. As an indigenous species has long-adapted to particular water environments, the species can be a suitable indicator to assess environmental risks caused by hazard chemicals in the particular site. Thus Neocaridina denticulata, a small freshwater shrimp indigenous to Korea, is worth considering for a test species for such purpose. N. denticulata were exposed to pentachlorophenol sodium salt, sodium azide and potassium dichromate using automatic flow-through system for 96 hours. The 96 hr lethal concentrations ($LC_{50}$) of these chemicals were calculated as $0.53{\pm}0.09\;mg/L$, $2.40{\pm}0.61\;mg/L$ and $1.21{\pm}0.09\;mg/L$ respectively and showed relatively small deviation from repetitive test results. When compared with the toxicity values of other species for each chemical, N. denticulata had moderate or high sensitivity to the toxicity of these chemicals. It can be concluded that N. denticulata is a good test species to evaluate acute toxicity of various hazardous chemicals.

Toxicity Decrease of Cadmium by the Pigment Produced by Azomonas agilis PY101 in the Culture of Bacterial Cells and Vero Cells

  • You, Kyung-Man;Lee, Soo-Youn;Park, Yong-Keun
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.232-236
    • /
    • 2002
  • The morphological patterns and the cytopathogenicity time of the Vero cells induced by free $Cd^{2+}$ and pigment-bound $Cd^{2+}$ were observed by inverted microscope in order to investigate the difference of cadmium toxicity. The Vero cells induced by Hee $Cd^{2+}$ of 0.1 mM were shown to have a fatal toxic effect and the cytopathogenicity could be seen early after 6$\pm$2 hours of incubation. Partially affected cells induced by pigment-bound $Cd^{2+}$ of 0.1 mM were shown and the cytopathogenicity could be seen after 20 hours of incubation. The Vero cells grown with free 0.001 mM $Cd^{2+}$ were also affected and the cytopathogenicity could be seen after 17 hours of incubation, whereas the Vero cells grown with 0.001 mM pigment- bound $Cd^{2+}$ were unaffected. The sensitivity of Escherichia coli DH5$\alpha$ bacterial cells was also examined after a short treatment with free $Cd^{2+}$ or pigment-bound $Cd^{2+}$. About 5% of cells survived after 0.01 mM of free $Cd^{2+}$ treatment, while about 68% of cells survived after 0.01 mM of pigment- bound $Cd^{2+}$.

Use of Chinese Bleak, Aphyocypris chinensis, in Embryo and Sac-Fry Stages Toxicity Test (왜몰개 (Aphyocypris chinensis)를 이용한 Embyo, Sac-fry stages Toxicity Test)

  • Yeom, Dong-Hyuk;Seo, Jin-Won;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.359-363
    • /
    • 2005
  • ESS (Embryo and sac-try stage) 독성 시험에서 시험어종으로서의 국내토착종인 왜몰개 (Aphyocypris chinensis)의 적용성을 평가하기 위하여 아연(Zn)을 사용하여 국제적인 추천시험 어종인 송사리(Oryzais latipes)와 감수성을 비교하였다. 시험기간은 대조군에서 아사가 관찰되는 시기 즉, 왜몰개는 수정 후 8일, 송사리는 수정 후 16일로 하였으며, 시험기간 동안 수정란의 부화율, 수정란 및 난황단계의 치어(sar-fry)의 사망률, 형태적인 발달, 치어의 성장 등을 관찰 및 측정하였다. 두 종 모두 수정란의 생존율에 아연의 영향을 받았으며, LOEC는 모두 14.5 mg/L이었다 난황단계 치어의 사망률을 관찰한 결과, 왜몰개는 1.4mg/L부터 급격히 증가된 반면에 송사리는 14.5mg/L에서 $100\%$사망률이 관찰되었다. 시험물질에 노출된 왜몰개와 송사리 모두 척추변형이 관찰되었으며, 체장을 측정한 결과는 왜몰개가 송사리에 비해 민감하게 반응하는 것으로 나타났다. 위와 같은 결과들은 종합해 볼 때, ESS독성시험에서 왜몰개가 대체 시험어종으로서 사용될 수 있는 가능성을 보여주었다

Behavioral Effects of Mianserin on the Developmental Toxicity of Cocaine

  • Kang, Dong-Won;Kim, Dong-Goo
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.171-179
    • /
    • 1996
  • To investigate the involvement of $5-HT_{2A}/ 5-HT_{2C} receptors in the developmental toxicity of cocaine in rats, mianserin (2.5 mg/kg), a $5-HT_{2A}/5-HT_{2C}$ receptor antagonist, and/or cocaine HCl (45 mg/kg) were administered intraperitoneally (i.p.), during postnatal days (PND) 7-13. Behavioral assessments for the rat pups were done after 100 days of age by using the progressive ratio schedule of reinforcement (FR 1-FR 128, doubled everyday) and cocaine challenge (5, 15 or 30 mg/kg i.p.) upon established FR 32 behavior. Cocaine injected just prior to the FR 32 session suppressed the established FR 32 responding in a dose-dependent manner. The low dose of cocaine did not affect the FR 32 responding, while the high dose of cocaine suppressed it in all experimental groups. However, by the middle dose of cocaine, rats previously received water-cocaine in their early life showed a marked resistance to cocaine-induced behavioral suppression, and this resistance was not observed in rats received both mianserin and cocaine in their early life. These results suggest that $5-HT_{2A}/ 5-HT_{2C}$ receptors may have an important role for the persistently altered behavioral sensitivity to cocaine caused by exposure to cocaine during development.

  • PDF

Effects of Acute Acid Stress on Hatching and Mortality of Hermaphroditic Teleost, Rivulus marmoratus(Cyprinodontiformes; Rivulidae)

  • Kim, Ae-Ri;Lee, Meoung-Sook;Park, Eun-Ho
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.345-348
    • /
    • 2003
  • The effects of acute acid stress on hatching success and hatching period of laboratory-reared hermaphroditic fish Rivulus marmoratus were examined. The effects of acute acid toxicity on mortality was also determined in three life stages of this fish. There was a significant negative effect of acid stress on hatching performance in the R. marmoratus embryos. The hatching success was only 5% at pH 3.5 compared to over 78% at pH higher than 4.0. The hatching period was also delayed by low pH treatments. The larval and juvenile stages were more sensitive to acid toxicity on mortality than the adult stage, but larvae and juveniles showed similar sensitivity. The 96-h LC50 value was pH 3.8 in larval and juvenile stages and pH 3.3 in adult stage.

Genetic Toxicity Studies of YH1226, a Cephalosporin Antibiotic (세파계 항생제, YH1226의 유전독성 평가)

  • 허광원;오혜영;박장환;허옥순;순수정;한의식;김명희;강희일
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.2
    • /
    • pp.89-92
    • /
    • 1998
  • The results of chromosome aberration test in mammalian cells in culture (Chinese hamster lung fibroblast cells) showed no induction of structural and numerical aberrations by YH1226, a cephalosporin antibiotic regardless of metabolic activation, while positive control group (mitomycin C and benzo(a)pyrene) showed structural chromosome aberrations of 25% and 10%, respectively. The in vivo induction of micronuclei was measured in polychromatic erythrocytes in bone marrow of male ddY mouse given YH1226 at 500, 250, 125 mg/kg by i.p. once. After 24 hours, animals were sacrificed and evaluated for the incidence of micronucleated polychromatic erythrocytes in whole erythrocytes. Although a positive response for induction of micronuclei in animals treated with mitomycin C demonstrated the sensitivity of the test system for detection of a chemical clastogen, YH1226 did not induce microunclei in bone marrow of ddY male mice.

  • PDF

Health Effects of Mercury Exposure through Fish (어패류를 통한 수은 노출과 건강영향)

  • SaKong, Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.28 no.2
    • /
    • pp.105-115
    • /
    • 2011
  • Mercury is a toxic, persistent pollutant that bioaccumulates and biomagnifies through food webs. People are exposed to methyhnercruy mainly through their diet, especially through the consumption of freshwater and marine fish and of other animals that consume fish (e.g., marine mammals). All humans are exposed to low levels of mercury. Dietary patterns can increase exposure to a fish-eating population where the fish and seafood are contaminated with mercury. The primary toxicity targets of mercury and mercury compounds are the nervous system, kidneys, and cardiovascular system. It is generally accepted that developing organ systems are most sensitive to the toxic effects of mercury. The fetal-brain mercury levels appear to be significantly higher than the maternal-blood mercury levels, and the developing central nervous system of the fetus is currently regarded as the main system of concern as it demonstrates the greatest sensitivity. The subpopulation that may be at greater risk for mercury toxicity are those exposed to higher levels of methylmercury due to carnivorous fish, including sharks.

  • PDF

A Panoramic Overview of Mitochondria and Mitochondrial Redox Biology

  • Kim, Aekyong
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.221-234
    • /
    • 2014
  • Mitochondria dysfunction was first described in the 1960s. However, the extent and mechanisms of mitochondria dysfunction's role in cellular physiology and pathology has only recently begun to be appreciated. To adequately evaluate mitochondria-mediated toxicity, it is not only necessary to understand mitochondria biology, but discerning mitochondrial redox biology is also essential. The latter is intricately tied to mitochondrial bioenergetics. Mitochondrial free radicals, antioxidants, and antioxidant enzymes are players in mitochondrial redox biology. This review will provide an across-the-board, albeit not in-depth, overview of mitochondria biology and mitochondrial redox biology. With accumulating knowledge on mitochondria biology and mitochondrial redox biology, we may devise experimental methods with adequate sensitivity and specificity to evaluate mitochondrial toxicity, especially in vivo in living organisms, in the near future.

Drug-Induced Nephrotoxicity and Its Biomarkers

  • Kim, Sun-Young;Moon, A-Ree
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.268-272
    • /
    • 2012
  • Nephrotoxicity occurs when kidney-specific detoxification and excretion do not work properly due to the damage or destruction of kidney function by exogenous or endogenous toxicants. Exposure to drugs often results in toxicity in kidney which represents the major control system maintaining homeostasis of body and thus is especially susceptible to xenobiotics. Understanding the toxic mechanisms for nephrotoxicity provides useful information on the development of drugs with therapeutic benefits with reduced side effects. Mechanisms for drug-induced nephrotoxicity include changes in glomerular hemodynamics, tubular cell toxicity, inflammation, crystal nephropathy, rhabdomyolysis, and thrombotic microangiopathy. Biomarkers have been identified for the assessment of nephrotoxicity. The discovery and development of novel biomarkers that can diagnose kidney damage earlier and more accurately are needed for effective prevention of drug-induced nephrotoxicity. Although some of them fail to confer specificity and sensitivity, several promising candidates of biomarkers were recently proved for assessment of nephrotoxicity. In this review, we summarize mechanisms of drug-induced nephrotoxicity and present the list of drugs that cause nephrotoxicity and biomarkers that can be used for early assessment of nephrotoxicity.

Comparing Acute and Swimming Endpoints to Evaluate the Response of Two Freshwater Midge Species, Chironomus yoshimatsui and Chironomus riparius to Heavy Metals (요시마쯔깔따구와 리파리깔따구(파리목: 깔따구과)의 중금속에 대한 급성독성 및 유영능력 비교)

  • Yoo DongHun;Son Jino;Mo Hyoung-ho;Bae Yeon Jae;Cho Kijong
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.98-105
    • /
    • 2005
  • The relative sensitivity of two freshwater non- biting midges, Chironomus yoshimatsui Martin and Sublette and C. riparius Meigan, was examined for lead, cadmium, and mercury in water- only exposures. Two endpoints were compared to assess toxicity 48 h and 96 h after exposure: Acute toxicity ($50\%$ lethal concentration: $LC_50$) and behavioral toxicity ($50\%$ effective concentration: $EC_{50}$). for the behavioral toxicity, reduction of swimming performance of two midge species in the treated conditions was compared to that in the untreated control. The sensitivities differed depending on the species and heavy metals, although some trends emerged. $LC_50$ values in C. yoshimatsui to cadmium and lead were always higher than those in C. riparius with increasing toxicity, regardless of the exposure times. The opposit was true for the mercury treatment. Similar trends were observed in the $EC_{50}$ values. The $EC_{50}$ values were always lower than the $LC_50$ values in all the treatment cases (midge species, heavy metals, and exposure times). These results indicate that the two midge species respond to the heavy metals differently: C. riparius is sensive to cadmium and lead and C. yoshimatsui to mercury. Behavioral toxicity such as swimming performance can be an effective endpoint for assessing heavy metal toxicity in water.