• Title/Summary/Keyword: Toxic Substance

Search Result 236, Processing Time 0.023 seconds

Extracorporeal Life Support in Treatment of Poisoning Patient: Systematic Review (체외 생명유지술을 이용한 중독 환자의 치료: 체계적 고찰)

  • Lee, Yong Hee;Ko, Dong Ryul;Kong, Taeyoung;Joo, Young Seon;You, Je Sung;Chung, Sung Phil
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Purpose: Extracorporeal life support (ECLS) is a term used to describe a number of modalities including extracorporeal membrane oxygenation (ECMO) to support cardiac and/or pulmonary systems. The purpose of this study is to review the available evidence regarding the effect of ECLS in patients with acute poisoning. Methods: Electronic literature searches with PubMed, Embase, Cochrane library, and KoreaMed were conducted for identification of relevant studies addressing ECLS in treatment of acute poisoning. The literature search was conducted by two investigators in March, 2016 with publication language restricted to English and Korean. The toxic substance, technique of ECLS, and final outcome of each case were analyzed. Results: The final analysis included 64 articles including 55 case reports. There were no articles classified according to a high level of evidence such as randomized trial and prospective cohort study. ECLS treatment was used in the management of patients poisoned with 36 unique substances. Venovenous ECMO was performed in 4 cases. Among the reported cases, 10 patients died despite treatment with ECLS. Conclusion: Evidence supporting ECLS for patients with acute poisoning is inadequate. However, many case reports suggest that early consideration of ECLS in poisoned patients with refractory cardiac arrest or hemodynamic compromise refractory to standard therapies may be beneficial.

  • PDF

Investigation of Liquid Phase Ammonia Removal Efficiency by Chemo-biological Process of Zeolites and Klebsiella pneumonia sp. (제올라이트와 Klebsiella pneumonia sp.을 이용한 화학-생물학적 액상 암모니아의 제거 효율 연구)

  • Park, Min Seob;Choi, Kwon-Young
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.685-690
    • /
    • 2017
  • Ammonia is a useful substance which is widely used in various industries. It is generally released by the decomposition of agricultural wastes and known to have toxic effects on human beings. Due to the common usage, it is possible to cause water pollution through either direct or indirect leakage. Such cases, it is preferable to use the adsorption capacity of zeolite to rapidly remove ammonium ions, but it is not sufficiently removed by the adsorption only. In this paper, the removal efficiency of ammonium ion through both the adsorption capacities of commercial synthetic zeolites and the biological mechanism of microorganisms were compared. In addition, microorganisms were immobilized on the zeolite in order to enhance the removal efficiency by applying a chemo-biological process. As a result, the standard commercial zeolite showed 67~81% of the removal efficiency in 2~4 hours at a 100 ppm concentration of ammonium, whereas the selected microorganism Klebsiella pneumoniae subsp. Pneumoniae showed up to 97% within 8 hours. When the microorganism was immobilized on the zeolite, the highest removal efficiency of approximately 98.5% were observed within 8 hours.

Application of Stimuli-responsive Chitosan Micelles for Improved Therapeutic Efficiency of Anticancer Agents (항암제의 치료 효율성을 높이기 위한 다양한 자극 응답성 물질이 개질된 키토산 마이셀의 응용성 고찰)

  • Jeong, Gyeong-Won;Park, Jun-Kyu;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.147-154
    • /
    • 2018
  • Currently, to overcome low therapeutic efficiencies and side effects of anticancer agents, the study of drug carrier based on polymers have been consistently investigated. Although the traditional drug carrier based on polymers displayed an excellent result and significant progress, there has been a problem with the side effect and low therapeutic efficiency because of the premature drug release before reached to the targeted region by the low stability in blood stream and sustained drug release. In this review article, to improve the problem of inefficient drug release, methods were suggested, which can maximize the therapeutic efficiency by increasing the stability in the blood stream and triggering drug release at the target site by introducing a stimuli-responsive substance to the non-toxic and biocompatible natural polymer chitosan.

SOP (Search of Omics Pathway): A Web-based Tool for Visualization of KEGG Pathway Diagrams of Omics Data

  • Kim, Jun-Sub;Yeom, Hye-Jung;Kim, Seung-Jun;Kim, Ji-Hoon;Park, Hye-Won;Oh, Moon-Ju;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.208-213
    • /
    • 2007
  • With the help of a development and popularization of microarray technology that enable to us to simultaneously investigate the expression pattern of thousands of genes, the toxicogenomics experimenters can interpret the genome-scale interaction between genes exposed in toxicant or toxicant-related environment. The ultimate and primary goal of toxicogenomics identifies functional context among the group of genes that are differentially or similarly coexpressed under the specific toxic substance. On the other side, public reference databases with transcriptom, proteom, and biological pathway information are needed for the analysis of these complex omics data. However, due to the heterogeneous and independent nature of these databases, it is hard to individually analyze a large omics annotations and their pathway information. Fortunately, several web sites of the public database provide information linked to other. Nevertheless it involves not only approriate information but also unnecessary information to users. Therefore, the systematically integrated database that is suitable to a demand of experimenters is needed. For these reasons, we propose SOP (Search of Omics Pathway) database system which is constructed as the integrated biological database converting heterogeneous feature of public databases into combined feature. In addition, SOP offers user-friendly web interfaces which enable users to submit gene queries for biological interpretation of gene lists derived from omics experiments. Outputs of SOP web interface are supported as the omics annotation table and the visualized pathway maps of KEGG PATHWAY database. We believe that SOP will appear as a helpful tool to perform biological interpretation of genes or proteins traced to omics experiments, lead to new discoveries from their pathway analysis, and design new hypothesis for a next toxicogenomics experiments.

Development Plan of Accident Scenario Modeling Based on Seasonal Weather Conditions - Focus on Chlorine Leakage Accident - (계절별 기상조건에 따른 사고시나리오 모델링 발전방안 - 염소 누출사고를 중심으로 -)

  • Kim, Hyun-Sub;Jeon, Byeong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.733-738
    • /
    • 2017
  • In this study, we selected chlorine, a typical toxic material used in many workplaces, as the leakage material, and through the analysis of alternative scenarios based on the meteorological conditions in the summer frequently encountered in accidents, we suggest ways to improve the (method of analysis/accident scenario modeling). The analysis of 296 chemical accidents from January 2014 to December 2016 found that the highest rate of occurrence was in summer, accounting for 35.81% of the total. According to the risk assessment, the influence range and number of inhabitants in the influence area were 712.4 m and 20,090 under the annual mean weather conditions and 796.2 m and 27,143 people under the summer mean weather conditions, respectively. This result implies that, under certain conditions, the range of impacts in the current alternative scenario is incomplete. Therefore, risk assessment systems need to be improved in order to take into consideration the characteristics of each chemical substance.

NITRIC OXIDE AND DENTAL PULP (NITRIC OXIDE와 치수)

  • Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.543-551
    • /
    • 2002
  • Nitric oxide (NO) is a small molecule (mol. wt. 30 Da) and oxidative free radical. It is uncharged and can therefore diffuse freely within and between cells across membrane. Such characteristics make it a biologically important messenger in physiologic processes such as neurotransmission and the control of vascular tone. NO is also highly toxic and is known to acts as a mediator of cytotoxicity during host defense. NO is synthesized by nitric oxide synthase (NOS) through L-arginine/nitric oxide pathway which is a dioxygenation process. NO synthesis involves several participants, three co-substrates, five electrons, five co-factors and two prosthetic groups. Under normal condition, low levels of NO are synthesized by type I and III NOS for a short period of time and mediates many physiologic processes. Under condition of oxidant stress, high levels of NO are synthesized by type II NOS and inhibits a variety of metabolic processes and can also cause direct damage to DNA. Such interaction result in cytostasis, energy depletion and ultimately cell death. NO has the potential to interact with a variety of intercellular targets producing diverse array of metabolic effects. It is known that NO is involved in hemodynamic regulation, neurogenic inflammation, re-innervation, management of dentin hypersensitivity on teeth. Under basal condition of pulpal blood flow, NO provides constant vasodilator tone acting against sympathetic vasoconstriction. Substance P, a well known vasodilator, was reported to be mediated partly by NO, while calcitonin-gene related peptide has provided no evidence of its relation with NO. This review describes the roles of NO in dental pulp in addition to the known general roles of it.

Strengthening the Occupational Exposure Limit for 1-Bromopropane according to the Results of Epidemiological Studies and Exposure Status (1-브로모프로판의 노출 실태와 역학조사에 따른 노출기준 강화에 관한 연구)

  • Ha, Kwonchul;Kim, Seung Won;Phee, Young Gyu;Lee, Naroo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.3
    • /
    • pp.270-279
    • /
    • 2020
  • Objective: The aim of this study was to propose revision of the occupational exposure limit(OEL) for 1-Bromopropane(1-BP) following a review of the appropriateness of the standard in light of increasing epidemiological data and handling risk. Materials and Methods: The results of toxicity and epidemiologic investigations for 1-BP and agencies' OELs were compared and reviewed through a literature review. In order to investigate the status of 1-BP handling in South Korea, data from work environment actual condition survey results and work environment measurement results were used. Results: The toxicity of 1-BP, such as central nervous system(CNS) damage, peripheral neuropathy, hematological adverse effects, and developmental and reproductive toxicity(male and female) has been reported. ACGIH recommends 0.1 ppm as a TLV-TWA value, but the OEL of South Korea stands at 25 ppm, which is 250 times higher than the TLV-TWA. Although 1-BP is a specially managed substance under the Industrial Safety and Health Law, the currently applied OEL cannot be said to be a safe level based on the results of epidemiological studies to date. In a work environment measurement in 2017, the total number of samples was 626, which were derived from 78 industries, and the average concentration was 1.173 ppm(standard deviation 2.88). Conclusions: To protect the health of workers handling 1-BP, estimated to be 780 in South Korea, it is necessary to strengthen the OEL(TWA) to a level of 0.3 ppm(lower than the 0.34 ppm with known toxic effects), which is believed to be safe as a result of epidemiological investigation. "Skin" notation should be recommended.

A Study on Rapid Residual Analysis of Benzo(a)pyrene in Agricultural Products and Soils (농산물 및 경작지 토양 시료 중 Benzo(a)pyrene 신속잔류분석법 개선 연구)

  • Kim, Hee-Gon;Ham, Hun-Ju;Hong, Kyong-Suk;Shin, Hee-Chang;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • BACKGROUND: Benzo(a)pyrene is a highly toxic substance which has been listed as a Group I carcinogen by the International Agency for Research on Cancer. There have been numerous studies by researchers worldwide on benzo(a)pyrene. Soxhlet, ultrasound-assisted, and liquid-liquid extractions have been widely used for the analysis of benzo(a)pyrene. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these disadvantages, we aimed to establish a rapid residual analysis of benzo(a)pyrene content in agricultural products and soil samples. METHODS AND RESULTS: A Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was used as the pretreatment procedure. For rapid residual analysis of benzo(a)pyrene, a modified QuEChERS method were used, and the best codition was demonstrated after various performing instrument analysis. The extraction efficiency of this method was also compared with Soxhlet extraction, the current benzo(a)pyrene extracting method. Although both methods showed high recovery rates, the rapid residual analysis method markedly reduced both the measurement time and solvent usage by approximately 97% and 96%, respectively. CONCLUSION: Based on these results, we suggest the rapid residual analysis method established through this study, faster and more efficient analysis of residual benzo(a)pyrene in major agricultural products such as rice, green and red chili peppers and also soil samples.

Subchronic Inhalation Toxicity of Trichloroacetonitrile on the Sprague Dawley Rats

  • Han, Jeong-Hee;Chung, Yong-Hyun;Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.203-211
    • /
    • 2015
  • Trichloroacetonitrile is used as an intermediate in insecticides, pesticides, and dyes. In Korea alone, over 10 tons are used annually. Its oral and dermal toxicity is classified as category 3 according to the globally harmonized system of classification and labelling of chemicals, and it is designated a toxic substance by the Ministry of Environment in Korea. There are no available inhalation toxicity data on trichloroacetonitrile. Thus, the present study performed inhalation tests to provide data for hazard and risk assessments. Sprague-Dawley rats were exposed to trichloroacetonitrile at concentrations of 4, 16, or 64 ppm for 6 hour per day 5 days per week for 13 weeks in a repeated study. As a result, salivation, shortness of breath, and wheezing were observed, and their body weights decreased significantly (p < 0.05) in the 16 and 64 ppm groups. All the rats in 64 ppm group were dead or moribund within 4 weeks of the exposure. Some significant changes were observed in blood hematology and serum biochemistry (e.g., prothrombin time, ratio of albumin and globulin, blood urea nitrogen, and triglycerides), but the values were within normal physiological ranges. The major target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs. The rats exposed to 16 ppm showed moderate histopathological changes in the transitional epithelium and olfactory epithelium of the nasal cavity. Nasal-associated lymphoid tissue (NALT) and respiratory epithelium were also changed. Respiratory lesions were common in the dead rats that had been exposed to the 64 ppm concentration. The dead animals also showed loss of cilia in the trachea, pneumonitis in the lung, and epithelial hyperplasia in the bronchi and bronchioles. In conclusion, the no-observed-adverse-effect level (NOAEL) was estimated to be 4 ppm. The main target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs.

Analytical method of phthalates in children's products (어린이 용품 중 프탈레이트류 함유량 및 전이량 분석방법 고찰)

  • Kang, Young-Yeul;Shin, Sun-Kyoung;Park, Jin-Soo;Kim, Woo-Il;Chun, Jin-Won;Heo, Hwa-Jin;Koo, So-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Phthalate plasticizer is not human carcinogens which has been classified as environmentally hazardous substance. Phthalates are absorbed into the body and cause tumors and ecological mutation to human potentially as reproductive toxic substances. For this reason, in some countries the use of phthalates in products for children has been banned. In this study, we proposed the analytical method of phthalate content and migration rate for children's product which was compared and reviewed to the analytical method of various countries, United States, Japan, European Union. The children's product on the proposed analytical method was analysed to consider of the correlation between the phthalate content and migration rate, but there was no correlation both of them.