• Title/Summary/Keyword: Toxic Plants

Search Result 344, Processing Time 0.027 seconds

A Study on Worker Exposure to Organic Solvents in Korea (우리나라 산업장 근로자의 유기용제 폭로에 관한 연구)

  • Paik, Nam Won;Lee, Young Hwan;Yoon, Chung Sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.88-94
    • /
    • 1998
  • Korea has been rapidly industrialized during the past 35 years. During this period, Korea has emphasized only production and workers health has been ignored. Workers are most frequently exposed to organic vapors, such as thinners. This study was performed to evaluate worker exposures to organic solvents by size and type of industry. Results are summarized below. Workers were exposed to mixtures of toluene, xylenes, trichloroethylene, n-hexane, acetone, methanol, n-butanol, n-butyl acetate, and MIBK. Considering additive effects of the compounds, exposure indices (EIs) were calculated. It was found that worker exposures to organic solvents were highest in small industries and lowest in large industries. During a day shift, the highest exposure was indicated 3 - 5 p.m. in the afternoon. Workers in small industries had potential exposures exceeding permissible exposure limits for organic solvents. Local exhuast systems were inappropriate and respiratory protective devices were not supplied to the workers in small industries. Neither program for safe use and storage of toxic materials nor program for respirators was found in any of the plants investigated. Based on the results of the study, workers of small scale industries should be considered first in industrial health.

  • PDF

Determination of Cadmium Transfer Rate from the Tobacco to Cigarette Smoke

  • Song, Mi-Young;Cho, Sung-Eel;Kim, Do-Yeon;Bock, Jin-Young;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • Tobacco plants absorb cadmium from soil and accumulate it in high concentrations in their leaves. Additionally, a significant portion of the cadmium contained in cigarettes passes into the smoke. Cadmium is known to be a toxic and carcinogenic compound that has harmful effects on the human body due to smoking. In this study, the concentrations of cadmium in the Ky3R4F reference cigarette and two commercial cigarettes were analyzed by inductively coupled plasma mass spectrometry. Each cigarette sample was partitioned into a tobacco rod and filter and then analyzed in order to determine the concentration of cadmium. The concentrations of cadmium in the mainstream smoke, ash, residue, and cigarette butt were also analyzed after the cigarettes were smoked under ISO smoking conditions. Transfer rates of the cadmium from the tobacco rod to the mainstream smoke, ash, and cigarette butt were 0.8 ~ 5%, 17 ~ 22%, and 5 ~ 7%, respectively. As a result, we estimated that the sidestream smoke contained about 70% of the cadmium from the tobacco rod.

Influence of Mineral Nutrition on Growth and Amino Acid Composition of Soybean (무기질(無機質)이 대두(大豆)의 성장(成長) 및 Amino Acid 조성(組成)에 미치는 영향)

  • Park, Jyung-Rewng;Cho, Soo-Yeul;Yun, Ok-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.5 no.1
    • /
    • pp.81-86
    • /
    • 1976
  • Soybean has been considered as an important source of food protein in many countries. This experiment was attempted to determine the effect of mineral nutrition on growth and amino acid composition of soybean by using the methods developed for other plants. The results showed that S was more effective than P on the growth of soybean when the amount of cation was not changed. Among cations investigated K was more effective than Mg and Ca on its growth. However, higher amounts of Ca resulted in toxic effect. In general, the content of amino acid hydrolyzed by HCl decreased in NS and NP as well as KCa and KMg groups. Amino acids, i.e., proline, cystine, aspartic acid, lysine and histidine were not detected in NS and NP in addition to KCa and KMg groups eventhough control group showed considerable amount of these amino acids.

  • PDF

The Biosynthesis Pathway of Swainsonine, a New Anticancer Drug from Three Endophytic Fungi

  • Ren, Zhenhui;Song, Runjie;Wang, Shuai;Quan, Haiyun;Yang, Lin;Sun, Lu;Zhao, Baoyu;Lu, Hao
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1897-1906
    • /
    • 2017
  • Swainsonine (SW) is the principal toxic ingredient of locoweed plants that causes locoism characterized by a disorder of the nervous system. It has also received widespread attention in the medical field for its beneficial anticancer and antitumor activities. Endophytic fungi, Alternaria sect. Undifilum oxytropis isolated from locoweeds, the plant pathogen Slafractonia leguminicola, and the insect pathogen Metarhizium anisopliae, produce swainsonine. Acquired SW by biofermentation has a certain foreground and research value. This paper mainly summarizes the local and foreign literature published thus far on the swainsonine biosynthesis pathway, and speculates on the possible regulatory enzymes involved in the synthesis pathway within these three fungi in order to provide a new reference for research on swainsonine biosynthesis by endophytic fungi.

Incidence of Altermaria Species in Red Pepper and Sesame from Korea and Their Ability to Produce Mycotoxins (한국산 고추와 참깨에 발생하는 Alternaria의 종류와 이들의 진균독소 생성능력)

  • 이향범;유승헌
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • Alternaria alternata and A. solani were identified from 130 Alternaria isolates obtained from red pepper fruits, and three species including A. alternata, A. sesami and A. sesamicola were detected from 150 isolates from sesame seeds. Among the 4 Alternaria species, A. alternata was the predominant fungus from both plants, having incidence of 95.4% in red pepper and 56.0% in sesame. Of the total 280 isolates, cultures on autoclaved rice of 75 isolates were tested for toxicity to 21-day-old virgin female rats. Out of 50 isolates of A. alternata, 17 were lethal to rats, inducing congestion and hemorrhage of stomach and intestine and kidney enlargement, and 8 caused lack of weight gain or weight loss. The other 25 isolates of A. alternat and all the isolates of A. sesami, A. sesamicola and A. solani, showed no significant indication of toxicity. Production of mycotoxins in the rice cultures of the above 75 isolates belonging to 4 species was analyzed. Alternaria cultures were extracted with methanol and purified by using solvent partition, thin-layer chromatography, and high performance liquid chromatography. Of the four species tested, all produced alternariol (AOH) and alternariol monomethyl ether (AME), three (A. alternata, A. sesami and A. sesamicola) produced alternuene (ALT) and altertoxin-I (ATX-I), and only A. alternata produced tenuazonic acid (TA). TA was produced by all of the highly toxic (lethal to rats) isolates of A. alternata, but not by any nontoxic isolates.

  • PDF

Detection of H2S Gas with CuO Nanowire Sensor (산화구리 나노선 센서의 황화수소 감지특성)

  • Lee, Dongsuk;Kim, Dojin;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.238-246
    • /
    • 2015
  • $H_2S$ is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to human body. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous singlewall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates by the arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to $800^{\circ}C$. The morphology and sensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and currentvoltage examination. The $H_2S$ gas sensing properties were carried out at different operating temperatures using dry air as the carrier gas. The CuO nanowire structure oxidized at $800^{\circ}C$ showed the highest response at the lowest operating temperature of $150^{\circ}C$. The optimum operating temperature was shifted to higher temperature to $300^{\circ}C$ as the oxidation temperature was lowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formation reaction on the surface.

Determination of Li by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

  • Park, Chang J.;Chung, Bag S.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.427-434
    • /
    • 1995
  • Inductively coupled plasma mass spectrometry combined with the isotope dilution method is used for the determination of lithium. The isotope dilution method is based on the addition of a known amount of enriched isotope (spike) to a sample. The analyte concentration is obtained by measuring the altered isotope ratio. The spike solution is calibrated through so called reverse isotope dilution with a primary standard. The spike calibration is an important step to minimize error in the determined concentration. It has been found essential to add spike to a sample and the primary standard so that the two isotope ratios should be as dose as possible. Since lithium is neither corrosive nor toxic, lithium is used as a chemical tracer in the nuclear power plants to measure feedwater flow rate. 99.9% $^7Li$ was injected into a feedwater line of an experimental system and sample were taken downstream to be spiked with 95% $^6Li$ for the isotope dilution measurements. Effects of uncertainties in the spike enrichment and isotope ratio measurement error at various spike-to-sample ratios are presented together with the flow rate measurement results in comparison with a vortex flow meter.

  • PDF

Extraction and Bioassay of Allelochemicals in Jerusalem Artichoke

  • Sungwook Chae;Lee, Ho-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.309-316
    • /
    • 2001
  • Helianthus tuberosus has been known to inhibit the growth of weeds and other plants sharing its habitat. This study was conducted to identify the allelochemicals of Helianthus tuberosus which were extracted with water and solvents. Aqueous extracts of leaf, stem, root, tuber and tuber peel of Helianthus tuberosus except tuber did not show significant differences in phytotoxicity to alfalfa seedlings. It was considered that Helianthus tuberosus contained fewer or less potential water-soluble substances that were toxic to alfalfa. Methanol extract of leaves of Helianthus tuberosus was sequentially partitioned in increasing polarity with n-hexane, ethylacetate and n-butanol. Each extract had a yield of 148, 12, 15.7 and 9.5g, respectively. Inhibitory effects on germination of alfalfa seeds treated with four fractions were not significantly different. But the significant reductions on hypocotyl length were observed for all the solvent extracts. Among the four fractions, the ethylacetate fraction showed the most significant inhibition effect on bioassay with alfalfa. Further separation of the active ethylacetate fraction by open column chromatography led to the 25 subfractions. In bioassay of each sub-fraction with alfalfa seeds, sub-fraction No. 13 showed the most inhibitory effect on seedling growth. $^1$H NMR and gas chromatography-mass spectrometry analysis revealed that sub-fraction No. 13 was the mixture of straight-chain saturated fatty acids.

  • PDF

Risk Assessment of Petrochemical Equipments Using Enhanced RBI Technique (개선된 RBI 기법을 이용한 석유화학설비의 위험도평가)

  • Lee Sang-Min;Song Ki-Hun;Chang Yoon-Suk;Choi Jae-Boong;Kim Young-Jin;Han Sang-In;Choi Song-Chun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1392-1398
    • /
    • 2005
  • API 581 guideline provides a methodology for calculating the risks of equipments in refinery or petrochemical plant. However, especially in part of the consequence of failure, there is a major limitation of its application to the petrochemical plant directly since only a representative material is considered in calculating the risk while the equipment is composed of numerous materials. The objectives of this paper are to propose an enhanced risk-based inspection (RBI) technique to resolve shortcomings inclusive of the above issue and to assess the risks of typical petrochemical equipments. In this respect, a program incorporating material database was developed to fully incorporate the characteristics of different materials. The proposed RBI program consists of qualitative, semi-quantitative and quantitative risk evaluation modules in which toxic materials as well as representative materials were selected automatically for comparison to those in the current guideline. It has been applied to assess the risks of equipments in ethylene facilities of petrochemical plants. Thereby, more realistic evaluation results were obtained and applicability of the proposed RBI program was proven.

Review on Molecular and Chemopreventive Potential of Nimbolide in Cancer

  • Elumalai, Perumal;Arunakaran, Jagadeesan
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.156-164
    • /
    • 2014
  • Cancer is the most dreaded disease in human and also major health problem worldwide. Despite its high occurrence, the exact molecular mechanisms of the development and progression are not fully understood. The existing cancer therapy based on allopathic medicine is expensive, exhibits side effects; and may also alter the normal functioning of genes. Thus, a non-toxic and effective mode of treatment is needed to control cancer development and progression. Some medicinal plants offer a safe, effective and affordable remedy to control the cancer progression. Nimbolide, a limnoid derived from the neem (Azadirachta indica) leaves and flowers of neem, is widely used in traditional medical practices for treating various human diseases. Nimbolide exhibits several pharmacological effects among which its anticancer activity is the most promising. The previous studies carried out over the decades have shown that nimbolide inhibits cell proliferation and metastasis of cancer cells. This review highlights the current knowledge on the molecular targets that contribute to the observed anticancer activity of nimbolide related to induction of apoptosis and cell cycle arrest; and inhibition of signaling pathways related to cancer progression.