• Title/Summary/Keyword: Toxic Plants

Search Result 342, Processing Time 0.026 seconds

A Study on the Reduction of Volatile Organic Compounds by Fatsia japonica and Ardisia pusilla (팔손이와 산호수에 의한 휘발성유기화합물 저감효과에 관한 연구)

  • Song, Jeong Eun
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.77-82
    • /
    • 2012
  • This study conducted the experiment of reduction of Volatile Organic Compounds(VOCs) and Formaldehyde concentration by Native plants, Fatsia japonica and Ardisia pusilla. The two plants are advantageous in that they are highly available as they grow wild, and being easy to get. Fatsia japonica is a plant of its wide and large leaf diverged 7 or 8 parts, which is thought to have a high effect of air purification. Ardisia pusilla has a smaller leaf than Fatsia japonica, which is characterized by more leaves and beautiful. Field measurements were performed using Fatsia japonica and Ardisia pusilla which were verified as air-purifying plants in Korea. The effect of reducing the concentration of VOCs and Formaldehyde by plant studied in a full scale mock-up model. The dimensions of the two models were equal. The concentration of Benzene, Toluene, Ethylbenzene, Xylene, Stylene, Formaldehyde were monitored, since they were known as most toxic materials. The concentration of VOCs was monitored three hours after the plants were placed and three days after the plants were placed. Field measurements were performed in models where the plants were placed and were not. As a result, they had all an effect of reducing pollution. In all cases of experiment of planting and growing volume, the more planting volume, the more excellent the effect. Toluene was more effective in Fatsia japonica and Ardisia pusilla planted, Formaldehyde was more effective in Fatsia japonica planted respectively. In planting and growing and placing experiment, the placement at sunny spot was more effective than that at scattered growing. When Fatsia japonica was placed at sunny spot, the reduction effect of Formaldehyde was the most excellent, and when Ardisia pusilla was placed at sunny spot, the reduction effect of Toluene was the most effective.

A Herbological study on the plants of Rhamnaceae in Korea. (한국산(韓國産) 서이목(鼠李目) 식물에 관한 본초학적(本草學的) 연구(硏究))

  • Mun, Dae-Won;Jeong, Jong-Kil
    • The Korea Journal of Herbology
    • /
    • v.21 no.3
    • /
    • pp.21-33
    • /
    • 2006
  • Objectives : The plans can be used for medicinal purposes among Rhamnales in korea and examined their effects and distributions. Methods : The examined herbalogical books and research papers which published at home and abroad. Results : 1. There are up to 10 genera and 35 species in the Rhamnales in Korea, and among them medicinal plants are 9 genera, 17 species, some 45% in total. 2. Rhamnella genus is the main kind that has 9 species among 35 species in the Rhamnales, of which medicinal plants are 4 species. 3. The cortex in the Rhamnales is the main part which is used medicinally. And the number of the species in the Rhamnales which are used medicinally is 16. 4. According to the nature and flavor of medicinal plants in the Rhamnales, they were classified into balance 33 species, and warm 13; sweet taste 28 and bitter taste 24 in the order. 5. According to meridian propism of medicinal plants in the Rhamnales, they were classified into heart meridian 8 species, stomach meridian 7, and liver meridian 6 in the order. 6. According to the properties and principal curative action, they were classified into drugs for detoxicant 30 species. drugs for antifebrile 23, and drugs for drain damp 13 in the order. 7. The number of toxic species in the Rhamnales was examined to be 6 species. Conclusion : There were totaled to 10 genera and 35 species in Rhamnales in Korea and among them medicinal plants are 9 genera, 17species, some 45% in total.

  • PDF

Basic research for exploring anti-obesity activity of several medicinal plants from Mongolia (몽골산 약용식물 수종의 항비만 활성 탐색을 위한 기초 연구)

  • Moon-Yeol Choi;So-Young Kim;Mi Ryeo Kim
    • The Korea Journal of Herbology
    • /
    • v.38 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Objective : Obesity in modern society has a significant impact on pathological, psychological and social problems. Therefore, many studies on obesity treatment using herbal extracts with fewer side effects have been conducted. This study was designed to investigate the effect of inhibiting fat accumulation in vitro in order to Mongolian medicinal plants find anti-obesity candidate among. Methods : We measured pancreatic lipase inhibitory activity in Mongolian medicinal plants extract. Cytotoxicity of these extracts was monitored in 3T3-L1 cells by MTT assay. In addition, the anti-obesity effects was confirmed at concentrations of 0.2, 0.1 and 0.05 mg/㎖ through Oil red O staining. Results : Among Mongolian medicinal plants, Rheum undulatum roots in September (RURS), Paeonia anomala L. (PAL), and Fragaria orientalis (FO) showed the highest pancreatic lipase inhibitory activity. As a result of the MTT assay, more than 80% was judged to be non-toxic, and the concentration was determined, and as a result of evaluating the lipid accumulation inhibitory effect, 6 types were selected as candidates. Conclusion : Based on these results, the top 7 species expected to be used as anti-obesity functional materials were selected. However, additional efficacy verification and mechanism of action need to be established in the future. So, it is expected that the medicinal plants verified through this will be used as functional materials for the prevention and treatment of obesity.

Herbicidal action mechanism of chlorsulfuron (Acetolactate synthase 저해 제초제인 chlorsulfuron의 작용기작)

  • Kim, Song-Mun;Kim, Yong-Ho;Hur, Jang-Hyun;Han, Dae-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.1-20
    • /
    • 1998
  • Chlorsulfuron, one of sulfonylurea herbicides acts through inhibition of acetolactate syuthase (EC 4.1.3.18; ALS, also known as acetohydroxyacid synthase) in the branched-chain amino acid biosynthesis process. After chlorsulfuron-ALS interaction, many physiological and metabolic disruptions occur in plants. However, it is not clear how this chlorsulfuron-ALS interaction affects those physiological and metabolic processes and how this interaction leads subsequently to plant death. Several researchers suggested that the death of chlorsulfuron-treated plants might be due to a shortage of the branched-chain amino acids, an accumulation of toxic metabolites, and/or a depletion of photoassimilates. It remains as a mystery presently, however, if such changes result in the plant death. In this review, we discussed how the chlorsulfuran-ALS interaction leads to physiological and metabolic disruptions in plants.

  • PDF

Enhanced Onion Resistance against Stemphylium Leaf Blight Disease, Caused by Stemphylium vesicarium, by Di-potassium Phosphate and Benzothiadiazole Treatments

  • Kamal, Abo-Elyousr A.M.;Mohamed, Hussein M.A.;Aly, Allam A.D.;Mohamed, Hassan A.H.
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.171-177
    • /
    • 2008
  • In this study, we investigated the induced defense response and protective effects against Stemphylium vesicarium by application of benzothiadiazole ($Bion^{(R)}$) and di-potassium phosphate salt $(K_2HPO_4)$ to onion. Onion leaves were sprayed with $Bion^{(R)}$ and $K_2HPO_4$, then inoculated 2 days later with a virulent strain of S. vesicarium under greenhouse conditions. Disease severity and activities of peroxidase (PO), polyphenoloxidase, phenylalanine ammonia-lyase (PAL) and phenol contents were evaluated in the treated leaf tissues. Reduction in the disease severity was observed in plants treated with $Bion^{(R)}$ and $K_2HPO_4$. Onion plants treated with $Bion^{(R)}$ and $K_2HPO_4$ and inoculated with the pathogen showed significantly higher PAL activity, PO activity, and phenol contents than inoculated water-treated plants 2 days after the treatment. In conclusion, the results of this study provide evidence that application of simple non-toxic chemical solutions as di-potassium phosphate and $Bion^{(R)}$ can control Stemphylium leaf blight of onion.

Toxic Assessment on Effluents of Argo/Industrial Wastewater Treatment Plants in Jeonnam using Chemical and Biological Method (전남 농공단지 폐수처리장 방류수의 화학적/생물학적 독성평가)

  • Lee, Moon-Hee;Choi, Ik-Chang;Han, Sang-Kuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.267-273
    • /
    • 2008
  • The purpose of this study is to investigate the distributive property of organic pollutants in effluents of argo/industrial wastewater treatment plants in Jeonnam using simultaneous analysis method of 310 chemicals. The numerous organic pollutants were detected in four sampling sites and the major chemicals were pesticides, CH type chemicals such as polycyclic compounds, CHO type chemicals such as phthalates, and CHO(N) type chemical such as aromatic amines. Moreover, 17 kinds of endocrine disrupters which include diethylptbalate were detected in each sampling sites. TU (Toxic unit) indicated cytotoxicity of samples using XTT assay, it appeared highly at A point(27.2) and D point(24.4). Also, the results from the correlation between total concentration of pollutants and TU did not correspond to the results of chemical and biological analysis.

  • PDF

Ecotoxicity Assessment of Industrial Effluent in Gyeonggi-do (경기지역 산업시설 방류수 생태독성 영향 평가)

  • Cho, Won-Sil;Kim, Sang-Hoon;Yang, Hyoung-Jae
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-123
    • /
    • 2011
  • Objectives: Industrial development in Korea results in a rapid increase in the number of chemicals, some of which may be responsible for toxicity to aquatic ecosystems. In addition, the types of hazardous chemicals included in industrial effluents have gradually increased. Therefore, chemical analysis alone is not enough to assess ecological effects of toxic chemicals in wastewater. Methods: In response to new regulations as whole effluent toxicity (WET) tests for effluent discharge of 15 publicly owned treatment works (POTWs) and 25 industrial effluent treatment plants in Gyeonggi-do, which will be effective from 2011, a necessity of studies emerges that investigates toxicity levels. Results: In case of the public treatment plants, none of them had exceeded the criteria for ecotoxicity. As for individual wastewater discharge facilities, on the other hand, two types were found to exceed the criteria: pulp and paper manufacturing facilities and pharmaceutical manufacturing facilities. For the pulp and paper manufacturing facilities, monitoring results could not help determine the exact toxicant identification. However, Daphnia magna inhibition effect or death was found to leave white plums, suggesting that suspended solids treated and the polymer used in coagulant dose. In case of pharmaceutical manufacturing facilities, the general water quality parameters cannot affect Daphia magna. However, conductivity and salinity can have an effect to be 14,000 ${\mu}s/cm$, 8.1‰ by salts, respectively. Toxicity Identification Evaluation (TIE) and Toxicity Reduction Evaluation (TRE) procedures results appeared to be effective for identifying toxic compounds in $Cl^{-}$ and $SO_4^{2-}$. Conclusions: It is necessary to develop control measures for water treatment chemicals and salts used for processes such as coagulation in individual wastewater discharge facilities in order to achieve the goal to protect aquatic ecosystems in public waters.

Cytotoxic Evaluation of the Essential Oils from Korean Native Plant on Human Skin and Lung Cells

  • AHN, Changhwan;YOO, Yeong-Min;PARK, Mi-Jin;HAM, Youngseok;YANG, Jiyoon;JEUNG, Eui-Bae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.371-383
    • /
    • 2021
  • Plant essential oils are used in products such as fragrances and cosmetics due to their individual aromatic characteristics. Currently, essential oils are not only used in cosmetics but also in pharmaceutical products with anti-bacterial, anti-viral, anti-fungal, anti-parasitic, insecticidal, anti-cancer, neuroprotective, psychophysiological, or anti-aging effects. Despite their pharmaceutical properties, some studies reported cytotoxic effects in high doses. Therefore, for pharmaceutical purposes, the margin of safety of essential oils needs to be examined. Herein, we evaluated the IC50 of 10 essential oil from Korean native plants: Juniperus chinensis L. var. sargentii Henry, Citrus natsudaidai Hayata, Citrus reticulata Blanco, Citrus unshiu (Yu. Tanaka ex Swingle) Marcow, Artemisia capillaris Thunb, Aster glehnii F. Schmidt, Juniperus chinensis L, Zanthoxylum schinifolium Siebold & Zucc, Zanthoxylum piperitum (L.) D, and Cinnamomum loureirii. In addition, gene regulation of the cell-cycle gene and apoptosis marker CASP3 was examined at the IC50 level. The purpose of this study was to describe the toxic concentrations of essential oils extracted from Korean native plants, thereby providing toxic concentration guidelines for inclusion in a toxicity database and in the application of plant essential oils in various fields.

Evaluation of the Feasibility of Phytoremediation of Soils Contaminated with Cd, Pb and Zn using Sunflower, Corn and Castor plants

  • Chae, Mi Jin;Jung, Goo-Bok;Kang, Seong Soo;Kong, Myung Suk;Kim, Yoo Hak;Lee, Deog Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.491-495
    • /
    • 2014
  • Phytoremediation is a technology using plants and associated soil microbes to reduce the concentrations or toxic effects of contaminants in the environments. It is regarded as a cost-effective, efficient, eco-friendly, and solar-driven technology with good public acceptance. This study was conducted to find the plants accumulating heavy metals in soils contaminated with Cd and Pb. Experimental plots (plot size: $0.81m^2$) was artificially contaminated using a contaminated soil collected from a field in vicinity of Wondong mine (WD). Sunflower, corn and castor were tested for their potential to remove heavy metals from the contaminated soils. The results indicated that sunflower was most effective in accumulating heavy metals and thus remedying the soils among the three crops. Dry weight and heavy metal uptake of sunflower shoot differed with growth period. For example, the Cd content of shoots including leaf and stem were 0.31mg, 2.23 mg, and 0.96 mg per plot at 4, 8 and 12 weeks after planting in Cd4-WD treatment; in addition, the dry weight of the shoots in Cd8-WD treatment was reduced due to heavy metal toxicity. This experiment showed that sunflower absorbed Cd, Pb and Zn in their shoots up to 8 weeks of planting; thereafter heavy metals uptake was diminished. This implies that the efficiency of these plants in cleaning the contaminated soils may be high at the early stage of plant growth.

Current Management Status of Mercury Emissions from Coal Combustion Facilities: International Regulations, Sampling Methods, and Control Technologies

  • Lee, Sung-Jun;Pudasainee, Deepak;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.1-11
    • /
    • 2008
  • Mercury (Hg), which is mainly emitted from coal-fired power plants, remains one of the most toxic compounds to both humans and ecosystems. Hg pollution is not a local or regional issue, but a global issue. Hg compounds emitted from anthropogenic sources such as coal-fired power plants, incinerators, and boilers, can be transported over long distances. Since the last decade, many European countries, Canada, and especially the United States, have focused on technology to control Hg emissions. Korea has also recently showed an interest in managing Hg pollution from various combustion sources. Previous studies indicate that coal-fired power plants are one of the major sources of Hg in Korea. However, lack of Hg emission data and feasible emission controls have been major obstacles in Hg study. In order to achieve effective Hg control, understanding the characteristics of current Hg sampling methods and control technologies is essential. There is no one proven technology that fits all Hg emission sources, because Hg emission and control efficiency depend on fuel type, configuration of air pollution control devices, flue gas composition, among others. Therefore, a broad knowledge of Hg sampling and control technologies is necessary to select the most suitable method for each Hg-emitting source. In this paper, various Hg sampling methods, including wet chemistry, dry sorbents trap, field, and laboratory demonstrated control technologies, and international regulations, are introduced, with a focus on coal-fired power plants.