• Title/Summary/Keyword: Toxic Gas

Search Result 496, Processing Time 0.028 seconds

Concentration and Gas-particle Partition of PCDDs/Fs and dl-PCBs in the Ambient Air of Ansan Area (안산지역 대기 중 다이옥신 및 dl-PCBs의 오염특성 조사)

  • Heo, Jong-Won;Kim, Dong-Gi;Song, Il-Seok;Lee, Gang-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.517-532
    • /
    • 2010
  • After establishment of Banwol industrial complex in 1987, Ansan city becomes the largest industrial sector development in Gyeonggi-do, Korea. As the population and industrial activity grow over this region, toxic air pollutants, particularly POPs (Persistent Organic Pollutants) from various emission sources have been major public concerns. Air samples for POPs monitoring were collected at the industrial sites ($A_2$), residential sites ($B_1$, $B_2$), commercial site (C), and rural/remote site (D) of the area of Ansan during 2008 with a prolonged industrial sampling site $A_1$ from 2001 to 2008. All samples were analysed for 2,3,7,8 substituted-polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) and dioxin like polychlorinatd diphenyls (dl-PCBs). In site $A_1$, a steady decline of their concentrations from 2003 to 2008 was observed due to the reinforced emission guideline from waste incinerators. The average concentration of the PCDD/Fs and dl-PCBs ranged between 0.118 pg-TEQ/$m^3$ (rural/remote site D) and 0.532 pg-TEQ/$m^3$ (industrial area $A_2$). These level were generally consistent with previous studies in Gyeonggi-do, while higher than other places. Most of PCDD/Fs congener were partitioned into particle phase, whereas dl-PCBs were partitioned into gas phase. The logarithm of gas-particle partition coefficient $K_P$ of dl-PCBs and PCDD/Fs were well correlated with sub-cooled liquid vapor pressure $P_L$. The slope $m_T$ of log $K_P$ versus log $P_L$ for PCDD/Fs (-1.22) and dl-PCBs (-1.02) in industrial area ($A_2$) were high compared to other residential/commercial area. It suggests that this area was likely influenced by the direct emission source of PCDD/Fs and dl-PCBs. To simulate the partition of PCDD/Fs and dl-PCBs between gas and particle phase, Junge-Pankow model ($P_L$-base) and $K_{oa}$ model were applied. It was found that J-P model was more suitable than the $K_{oa}$ model in this study.

A Study on the Fire Characterization of Foam block using Cone-calorimeter and FTIR (콘칼로리미터와 적외선분광계(FTIR)를 이용한 폼블럭의 연소특성에 대한 실험적 연구)

  • Han, Bong-Hoon;Seo, Dong-Ho;Kwon, Young-Hee;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.23-32
    • /
    • 2017
  • Foam block, popularized as the self-interior goods, is susceptible to fire since the main material is the polyethylene flammable synthetic resin. However, it is widely used in homes, offices, and multi-use facilities. In order to understand the fire characteristics of the foam block, two kinds of foam blocks sold in the market (non-fire retardant and fire retardant) were evaluated according to standard of KS F 5660-1 (Reaction to fire test). In addition, the hazard analysis of the gas generated by the combustion of the specimen was performed using the FTIR gas analyzer. The cone calorimeter test showed that the ignition and flame combustion of both two specimens were burned as soon as the radiant heat blocking device was removed, and it was confirmed that the flame could become a rapid propagation factor during the fire. The analysis of the combustion gas through the FTIR gas analyzer showed that both the carbon dioxide and carbon monoxide classified as the common combustion gases and the acrolein, ammonia, and hydrogen cyanide causing serious damage to the human body were detected substantially. This study showed that a foam block product has high ignitionability and generates toxic gases. Hence, it is urgently required to establish the standards used for properly classifying the combustion characteristics of the material on the basis of the use conditions of a foam block product and to prepare the standards on the purpose of use.

A Study on the Mortality in Oxygen and Toxic Gas Concentration According using Experimental Animals (실험동물을 이용 산소 및 유해가스 농도에 따른 치사율 연구)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.18-25
    • /
    • 2013
  • It may occur health hazards or death by suffocation or acute poisoning in case of oxygen deficiency in ambient or exposure to harmful gas. As a part of accident prevention, we studied the change of activity and lethal dose by changing the concentration of several hazardous gas with inhalation exposure chamber and laboratory animals. We investigated the lethality and motility change during either the 4 hrs whole body exposure to oxygen, nitrogen, toluene, $H_2S$, CO and 48 recovery. As results, it is estimated that 5% oxygen concentration as lethal concentration and 5.5% as $LC_{50}$ (rat, 4 hrs) with statistics for dose-response. The results of lethality in oxygen deficient condition (approximately 6%), the lethalities were 40%, 20% with 20 ppm $H_2S$, 600 ppm CO respectively, and was not increased the lethality with 8% CO. Thus, it was confirmed that the $H_2S$, CO had influence to lethal dose, while toluene had low fluence.

Investigation of Plant Injury under Ambient Air Pollutants (대기오염물질에 의한 농작물 피해원인 조사)

  • Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Jung, Goo-Bok;Kim, Won-Il;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In order to find out the cause of plant injury, the symptom of plant injury, and contents of element concerned in the plant were analysed. Also, a case study was conducted to find out the factor of plant injury at a agriculture and industry complex in Gyeongsang province in 2004. The distribution of isomeric curve was made with meteorological data, toxic gas concentration exhausted from pollution source. The general symptom of plant injury by ammonia gas was dry and dead of leaves with white color. At low concentration of ammonia gas, plant leaf showed spots of reddish brown. The characteristic of plant injury symptom by hydrogen fluoride gas was that the symptom was appeared at the edge of leaf. The isomeric curve of sulfur dioxide at the region, where the plant was damaged, showed that the area was affected by exhausted gas from the pollution source. Especially, this area was affected more deeply at summer than any other season.

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network (고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가)

  • Se-Hyeok Lee;Changuk Mun;Sangki Park;Jeong-Rae Cho;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.

1,3-Dioxolane-Based CO2 Selective Polymer Membranes for Gas Separation (1,3-Dioxolane 기반 CO2 선택성 고분자막의 개발)

  • Iqubal Hossain;Asmaul Husna;Ho Bum Park
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.94-109
    • /
    • 2023
  • 1,3-Dioxolane is an exciting material that has attracted widespread interest in the chemical, paint, and pharmaceutical industries as a solvent, electrolyte, and reagent because 1,3-dioxolane is not toxic, carcinogenic, explosive, auto-flammable, and multifunctional, and due to their excellent miscibility in most organic and aqueous solvent conditions. Recently, this material has received increasing attention as a CO2-selective polymer precursor to separating CO2 from flue gas and natural gas mixtures. Poly(1,3-dioxolane) (PDXL) possesses higher ether oxygen content than polyethylene oxide (PEO), which demonstrates superior membrane CO2/N2 separation properties owing to their polar ether oxygen groups exhibiting strong affinity toward CO2. Thus, PDXL-based membranes displayed an outstanding CO2 solubility selectivity over non-polar (N2, H2, and CH4) gases. However, the polar groups of PDXL, like PEO, promote chain packing efficiency and cause polymer crystallization, thereby reducing its gas permeability, which should be improved. In this short review, we discuss the recent advancement and limitations of PDXL membranes in gas separation applications. To conclude, we provide future perspectives for inhibiting the limits of 1,3-dioxolane-based polymers in the CO2 separation process.

Comparisons of the Consequences Based on the Damage Area and the Financial Loss in a Petrochemical Plant (석유화학공장에서 피해지역 및 재정적 손실에 의한 사고 피해크기 비교)

  • Kim, Bong-Hoon;Lee, Hern-Chang;Choi, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.20-27
    • /
    • 2011
  • The consequence analysis (CA) is widely using in the petrochemical plant through adoption of the process safety management (PSM) system, but it has not practical problem that the CA was not reflected effects for employee count, business interruption loss, utility usage, and etc.. In this study, to establish the practical emergency response plan and to achieve risk based management, the consequence based on the damage area and the financial loss were estimated and compared through application on facilities in the petrochemical plant. If the damage area is used, the consequence category must be determined by safety area considering simultaneously damage area, fatality area and toxic area. Also, the consequences based on the financial loss is more practical method for the case of considering process properties and circumstances.

Effects of NOx and SOx on the Medium pH and microalgal growth in photo-culture system (광배양 시스템에서 NOx 및 SOx의 배지 pH와 미세조류 생장에 미치는 영향)

  • Yoon, Se Young;Hong, Min Eui;Sim, Sang Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.255-263
    • /
    • 2013
  • Carbon dioxide reduction technologies using photosynthetic microorganism were suggested to overcome environmental destruction caused by $CO_2$ in flue gases from power plant and other industries. However, there are many toxic constituents in flue gas including CO, NOx, SOx. Continuous and Excessive supply of these noxious gases to cells will leads to inhibition of microalgal growth along with partial cell death. In this study, we tested the noxious effect of SOx and NOx on the pH and microalgal growth under photoautotrophic culture in three microalgae of Neochloris oleoabundans, Chlorella vulgaris and Haematococcus pluvialis. As a result, SOx concentration more than 50 ppm led to the rapid reduction of pH, thereby inhibiting of the growth in Neochloris oleoabundans and Chlorella vulgaris. NOx concentration more the 100 ppm reduced the exponential growth of N. oleoabundans and C. vulgaris. And H. pluvialis exhibited low sensitivity to SOx and NOx. Consequently, the three microalgae of N. oleabundas, C. vulagaris and H. pluvialis showed the normal vegetative growth in 25 ppm of NOx and SOx. Above all, H. pluvialis was useful for the $CO_2$ sequestration of the flue gas including high concentrations of NOx and SOx.

3D Terrain Model Application for Explosion Assessment

  • Kim, Hyung-Seok;Chang, Eun-Mi;Kim, In-Won
    • 한국지역지리학회:학술대회
    • /
    • 2009.08a
    • /
    • pp.108-115
    • /
    • 2009
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmentaldescription of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapor Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapor Explosion), Fireball and so on, among them.we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

A Study on the Thermal Decomposition Characteristics of Waste PVC Wire Added with CaO (CaO를 첨가한 폐PVC전선의 열적분해 특성에 관한 연구)

  • Shah, Malesh;Park, Ho;Kwon, Woo-Teck;Lee, Hae-Pyeong;Oh, Sea-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.268-277
    • /
    • 2012
  • The thermal decomposition characteristic of waste PVC wires has been studied by using TGA and fixed-bed reactor. The experimental conditions of decomposition temperatures, air flow rates and weight ratio of CaO/PVC were considered in this work. To verify the effectiveness of CaO addition to remove HCl and toxic gases generated from thermal decomposition of PVC wire, the gaseous products obtained from the thermal decomposition of PVC were analyzed by GC/MS(Gas Chromatograph and Mass Spectrometry). To investigate the effect of CaO in thermal decomposition of PVC, liquid products were also analyzed by GC/MS. And the effect of decomposition temperature, air flow rate and CaO/ PVC weight ratio on the yield of liquid, gas and residue fraction have been also studied. From this work, it was found that the removal amount of HCl generated from thermal decomposition of PVC increased with increase of CaO addition.