• 제목/요약/키워드: Tournament selection

검색결과 27건 처리시간 0.032초

분할구조 기반의 다기능 연산 유전자 알고리즘 프로세서의 구현 (Implementation of GA Processor with Multiple Operators, Based on Subpopulation Architecture)

  • 조민석;정덕진
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권5호
    • /
    • pp.295-304
    • /
    • 2003
  • In this paper, we proposed a hardware-oriented Genetic Algorithm Processor(GAP) based on subpopulation architecture for high-performance convergence and reducing computation time. The proposed architecture was applied to enhancing population diversity for correspondence to premature convergence. In addition, the crossover operator selection and linear ranking subpop selection were newly employed for efficient exploration. As stochastic search space selection through linear ranking and suitable genetic operator selection with respect to the convergence state of each subpopulation was used, the elapsed time of searching optimal solution was shortened. In the experiments, the computation speed was increased by over $10\%$ compared to survival-based GA and Modified-tournament GA. Especially, increased by over $20\%$ in the multi-modal function. The proposed Subpop GA processor was implemented on FPGA device APEX EP20K600EBC652-3 of AGENT 2000 design kit.

An Adaptive Virtual Machine Location Selection Mechanism in Distributed Cloud

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.4776-4798
    • /
    • 2015
  • The location selection of virtual machines in distributed cloud is difficult because of the physical resource distribution, allocation of multi-dimensional resources, and resource unit cost. In this study, we propose a multi-object virtual machine location selection algorithm (MOVMLSA) based on group information, doubly linked list structure and genetic algorithm. On the basis of the collaboration of multi-dimensional resources, a fitness function is designed using fuzzy logic control parameters, which can be used to optimize search space solutions. In the location selection process, an orderly information code based on group and resource information can be generated by adopting the memory mechanism of biological immune systems. This approach, along with the dominant elite strategy, enables the updating of the population. The tournament selection method is used to optimize the operator mechanisms of the single-point crossover and X-point mutation during the population selection. Such a method can be used to obtain an optimal solution for the rapid location selection of virtual machines. Experimental results show that the proposed algorithm is effective in reducing the number of used physical machines and in improving the resource utilization of physical machines. The algorithm improves the utilization degree of multi-dimensional resource synergy and reduces the comprehensive unit cost of resources.

L-CAA : 행위 기반 강화학습 에이전트 구조 (L-CAA : An Architecture for Behavior-Based Reinforcement Learning)

  • 황종근;김인철
    • 지능정보연구
    • /
    • 제14권3호
    • /
    • pp.59-76
    • /
    • 2008
  • 본 논문에서는 실시간 동적 환경에 효과적인 L-CAA 에이전트 구조를 제안한다. L-CAA 에이전트 구조는 변화하는 환경에 대한 적응성을 높이기 위해, 선행 연구를 통해 개발된 행위기반 에이전트 구조인 CAA에 강화학습 기능을 추가하여 확장한 것이다. 안정적인 성능을 위해 L-CAA 구조에서는 행위 선택과 실행을 학습에 전적으로 의존하지 않고 학습을 보조적으로 이용한다. L-CAA에서 행위 선택 메커니즘은 크게 두 단계로 나뉜다. 첫 번째 단계에서는 사용자가 미리 정의한 각 행위의 적용 가능 조건과 효용성을 검사함으로써 행위 라이브러리로부터 실행할 행위들을 추출한다. 하지만 첫 번째 단계에서 다수의 행위가 추출되면, 두 번째 단계에서는 강화학습의 도움을 받아 이들 중에서 실행 할 하나의 행위를 선택한다. 즉, 강화학습을 통해 갱신된 각 행위들의 Q 함수값을 서로 비교함으로써, 가장 큰 기대 보상값을 가진 행위를 선택하여 실행한다. 또한 L-CAA에서는 실행 중인 행위의 유지 가능 조건을 지속적으로 검사하여 환경의 동적 변화로 인해 일부 조건이 만족되지 않는 경우가 발생하면 현재 행위의 실행을 즉시 종료할 수 있다. 그 뿐 아니라, L-CAA는 행위 실행 중에도 효용성이 더 높은 다른 행위가 발생하면 현재의 행위를 일시 정지하였다가 복귀하는 기능도 제공한다. 본 논문에서는 L-CAA 구조의 효과를 분석하기 위해, 대표적인 동적 가상환경인 Unreal Tournament 게임에서 자율적으로 동작하는 L-CAA 기반의 에이전트를 구현하고, 이를 이용한 성능 실험을 전개해본다.

  • PDF

경쟁 공진화 알고리듬에서 경쟁전략들의 비교 분석 (Comparison and Analysis of Competition Strategies in Competitive Coevolutionary Algorithms)

  • 김여근;김재윤
    • 대한산업공학회지
    • /
    • 제28권1호
    • /
    • pp.87-98
    • /
    • 2002
  • A competitive coevolutionary algorithm is a probabilistic search method that imitates coevolution process through evolutionary arms race. The algorithm has been used to solve adversarial problems. In the algorithms, the selection of competitors is needed to evaluate the fitness of an individual. The goal of this study is to compare and analyze several competition strategies in terms of solution quality, convergence speed, balance between competitive coevolving species, population diversity, etc. With two types of test-bed problems, game problems and solution-test problems, extensive experiments are carried out. In the game problems, sampling strategies based on fitness have a risk of providing bad solutions due to evolutionary unbalance between species. On the other hand, in the solution-test problems, evolutionary unbalance does not appear in any strategies and the strategies using information about competition results are efficient in solution quality. The experimental results indicate that the tournament competition can progress an evolutionary arms race and then is successful from the viewpoint of evolutionary computation.

유전자 알고리즘에서 Deceptive 문제에 대한 토너먼트 선택의 최적화 (An Optimization of Tournament Selection in Genetic Algorithms for Deceptive Problems)

  • 김예훈;안창욱;김기표
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.305-308
    • /
    • 2003
  • 본 논문은 토너먼트 선택을 사용한 Deceptive Problem에서 최적 해(optimum)를 찾으면서 수렴(Convergence)속도를 향상시키기 위한 최적의 조건을 찾고자 한다. 이를 위해 적합도가 높은 염색체(cromosome)를 다음 세대로 전달하면서 동시에 적합도가 낮은 염색체에 대해서도 적정 수준 전달되게 하였다. 또한 기존의 여러 선택기법 중 가장 일반적으로 사용되는 토너먼트 선택 기법의 문제점을 고찰하고, 제안 방법으로 최적도 및 수렴속도를 모의 실험을 통해 비교 및 분석한다. 실험 결과로부터 제안 방법에 대한 수렴속도의 경향을 고찰하였다.

  • PDF

유전자 알고리즘에서 수렴속도 향상을 위한 새로운 토너먼트 선택 기법 (A New Tournament Selection Technique for Fast Convergence in Genetic Algorithms)

  • 이용채;손진곤
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.139-141
    • /
    • 2006
  • 유전자 알고리즘에서 좋은 염색체(chromosome)를 선택하는 방법은 알고리즘의 성능을 향상시키는데 매우 중요한 핵심 요소이다. 이러한 선택 기법 중에는 비례 선택 기법, 순위기반 선택 기법, 토너먼트 선택기법 등이 잘 알려져 있다. 이 중 가장 성능이 좋은 토너먼트 선택 기법은 열성 염색체중 우성인 유전자를 포함하는 열성 염색체가 선택에서 배제되어 지역적 최적해(local minima)를 구할 가능성, 열성 염색체가 다음 세대 진화를 방해할 가능성 등의 문제점을 가지고 있다. 본 논문에서는 토너먼트 선택 기법의 문제점을 해결하기 위해서 토너먼트-교배 선택 기법을 제안하였다. 이 방법은 토너먼트 선택 기법을 기반으로 하되 열성 염색체가 선택되었을 경우 그 안에 들어 있는 우성 유전자를 알고리즘 진화에 반영시키고자 교배 단계를 추가한 기법이다. 제안된 토너먼트-교배 선택 기법을 이용하면 기존의 토너먼트 선택 기법보다 평균수행시간이 짧아져 해에 수렴하는 속도가 향상된다.

  • PDF

EHW를 위한 Genetic Algorithm Processor 구현 (Hardware Implementation of Genetic Algorithm Processor for EHW)

  • 김진정;김용훈;최윤호;정덕진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2827-2829
    • /
    • 1999
  • Genetic algorithms were described as a method of solving large-scaled optimization problems with complex constraints. It has overcome their slowness, a major drawback of genetic algorithms using hardware implementation of genetic algorithm processor (GAP). In this study, we proposed GAP effectively connecting the goodness of survival-based GA, steady-state GA, tournament selection. Using Pipeline Parallel processing, handshaking protocol effectively, the proposed GAP exhibits 50% speed-up over survival-based GA which runs one million crossovers per second(1MHz). It will be used for high speed processing such of central processor of EHW, robot control and many optimization problem.

  • PDF

Structural damage detection based on Chaotic Artificial Bee Colony algorithm

  • Xu, H.J.;Ding, Z.H.;Lu, Z.R.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1223-1239
    • /
    • 2015
  • A method for structural damage identification based on Chaotic Artificial Bee Colony (CABC) algorithm is presented. ABC is a heuristic algorithm with simple structure, ease of implementation, good robustness but with slow convergence rate. To overcome the shortcoming, the tournament selection mechanism is chosen instead of the roulette mechanism and chaotic search mechanism is also introduced. Residuals of natural frequencies and modal assurance criteria (MAC) are used to establish the objective function, ABC and CABC are utilized to solve the optimization problem. Two numerical examples are studied to investigate the efficiency and correctness of the proposed method. The simulation results show that the CABC algorithm can identify the local damage better compared with ABC and other evolutionary algorithms, even with noise corruption.

Optimum design of plane steel frames with PR-connections using refined plastic hinge analysis and genetic algorithm

  • Yun, Young Mook;Kang, Moon Myung;Lee, Mal Suk
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.387-407
    • /
    • 2006
  • A Genetic Algorithm (hereinafter GA) based optimum design algorithm and program for plane steel frames with partially restrained connections is presented. The algorithm was incorporated with the refined plastic hinge analysis method, in which geometric nonlinearity was considered by using the stability functions of beam-column members and material nonlinearity was considered by using the gradual stiffness degradation model that included the effects of residual stress, moment redistribution by the occurrence of plastic hinges, partially restrained connections, and the geometric imperfection of members. In the genetic algorithm, a tournament selection method and micro-GAs were employed. The fitness function for the genetic algorithm was expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions were expressed, respectively, as the weight of steel frames and the constraint functions which account for the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimum design results of two plane steel frames with fully and partially restrained connections were compared.

유전 알고리즘을 이용한 퍼지형 안전화 제어기의 최적 설계에 관한 연구 (A Study on the Optimal Design Fuzzy Type Stabilizing Controller using Genetic Algorithm)

  • 이흥재;임찬호;윤병규;임화영;송자윤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1382-1387
    • /
    • 1999
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. So far fuzzy controllers have been applied to power system stabilizing controllers due to its excellent properties on the nonlinear systems. But the design process of fuzzy logic power system stabilizer requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents and optimal design method of the fuzzy logic stabilizer using the genetic algorithm. Non-symmetric membership functions are optimally tuned over an evaluation function. The present inputs of fuzzy stabilizer are torque angle error and the change of torque angle error without loss of generality. The coding method used in this paper is concatenated binary mapping. Each linguistic fuzzy variable, defined as the peak of a membership function, is assigned by the mapping from a minimum value to a maximum value using eight bits. The tournament selection and the elitism are used to keep the worthy individuals in the next generation. The proposed system is applied to the one-machine infinite-bus model of a power system, and the results showed a promising possibility.

  • PDF