• Title/Summary/Keyword: Touch voltage

Search Result 99, Processing Time 0.028 seconds

Study on Measurement Error Reduction Technique when Measuring Touch and Step Voltage of Grounding System (접지시스템의 접촉전압 및 보폭전압 측정오차 감소 기법에 관한 연구)

  • Kim, Dong-Woo;Lim, Young-Bea;Lee, Sang-Ick;Choi, Myeong-Il;Moon, Hyun-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.188-195
    • /
    • 2015
  • This paper presents measurement error reduction technique of touch and step voltage of grounding system based on numerical analysis. When measuring touch and step voltage of grounding system, auxiliary current probes should be located at suitable places. However, the auxiliary probes can not be located at suitable places in such cases as there are buildings and pavements. Therefore, in this paper, we provided measurement error reduction technique of touch and step voltage of grounding system according to the positions of auxiliary probes and angle between auxiliary probes. Also, measurement error analyses of touch and step voltage of grounding system have been conducted using more than one current probe. Based on these analyses, recommended positions of auxiliary probes within allowable measurement errors were presented.

An Assessment of Electric Shock Hazard by Safety Criteria Using Graphical Method (그래프법을 이용한 안전기준에 의한 감전위험성 평가)

  • 김두현;강동규
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.53-60
    • /
    • 2001
  • This paper presents a graphical method for hazard assessment of electric shock by safety criteria. For the human body to be safety actual body current should not exceed safety criteria, i.e. allowable body current. The assessment method presented in this paper is based m the safety criteria of the IEEE Standard 80 as well as the IEC 479-1. The hazard can be assessed in terms of alterable touch voltages instead of alterable body current. Thus, the hazard assessment of given electric shock condition is referred to a procedure by which the actual touch voltages are compared with the allowable (safe) touch voltages. Since the IEC 479-1 safety criteria are nonlinear, the graphical method is presented for the hazard assessment. Body current and body voltage are calculated with the allowable touch voltage. A comparison of the safety criteria of two widely accepted standards, i.e. the IEEE Std 80 End the IEC 479-1 is proposed. Also Thevenin equivalent resistance is obtained from electric shock model expressed by two-port earth-grid-foot system. On the basis of calculated results, the allowable touch voltage, the body current and the body voltage we can conduct the hazard or safety assessment and estimate the severity of electric shock.

  • PDF

Touch Voltage According to the Distance between Distribution Concrete Pole and Ground Rod (배전용 전주와 접지전극의 이격거리에 따른 접촉전압)

  • Lee, B.H.;Jung, H.U.;Lee, T.H.;Baek, Y.H.;Lee, D.M.;Jung, D.C.;Lee, K.S.;Ahn, C.H.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.391-394
    • /
    • 2005
  • This paper describes the touch voltages and potential distributions according to the distance between distribution concrete pole and ground rod when the current is injected to a ground rod through overhead ground wire. Touch voltage is measured in four directions. The touch voltage and ground potential distribution per 1 A are analyzed. The touch voltage was the highest at the around surface just above the ground rod.

  • PDF

Dual Sensing with Voltage Shifting Scheme for High Sensitivity Touch Screen Detection (고감도 터치스크린 감지를 위한 양방향 센싱과 전압쉬프팅을 이용한 센싱 기법)

  • Seo, Incheol;Kim, HyungWon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.71-79
    • /
    • 2015
  • This paper proposes a new touch screen sensing method that improves the drawback of conventional single-line sensing methods for mutual capacitance touch screen panels (TSPs). It introduces a dual sensing and voltage shifting method, which reduces the ambient noise effectively and enhances the touch signal strength. The dual sensing scheme reduces the detection time by doubling the integration speed using both edges of excitation pulse signals. The voltage shifting method enhances the signal-to-noise ratio (SNR) by increasing the voltage range of integrations, and maximizing the ADC's input dynamic range. Simulation and experimental results using a commercial 23" large touch screen show an SNR performance of 43dB and a scan rate 2 times faster than conventional schemes - key properties suited for a large touch screen panels. We implemented the proposed method into a TSP controller chip using Magnachip's CMOS 0.18um process.

Measurement and Analysis of Risk Voltages by Various Current Sources in Grounding System (다양한 전류원에 대한 접지시스템의 위험전압 측정과 분석)

  • Kil, Gyung-Suk;Moon, Byoung-Doo;Kim, Hwang-Kuk;Park, Dae-Won;Gil, Hyoung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • Grounding systems set the reference voltage level of electric circuits and suppress the Ground Potential Rise (GPR) by flowing fault currents to the ground safely. There are several parameters which evaluate the performance of grounding systems as ground resistance, touch voltage and step voltage. The touch and step voltages, which is called "risk voltage", are especially important to ensure the safety of human body. This paper dealt with the influence of current sources with the different frequency components on the touch and the step voltages. Three types of current sources as commercial frequency, square wave, and surge with the fast risetime of $50\;ns{\sim}500\;ns$ were used to analyze the risk voltages in a grounding system. The risk voltages showed remarkable difference in the same current amplitude depending on the current sources, and increased linearly with the current amplitude in the same current source. From the experimental results, it was confirmed that the risk voltages can be evaluated by a small current application in large-scale grounding systems and the possible largest risk voltage can be calculated by a surge current with the risetime of 200 ns or a current source with the same frequency component as the surge current.

Comparative Measurement of Touch and Step Voltages in Ground Systems (접지시스템에서 접촉전압과 보폭전압의 비교측정)

  • Kim, Hwang-Kuk;Moon, Byung-Doo;Park, Dae-Won;Kil, Gyung-Suk;Han, Ju-Seop
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.311-315
    • /
    • 2008
  • Ground systems set the reference voltage level of circuit and system, and suppress Ground Potential Rise (GPR) by flowing fault currents to ground safely. There are several parameters which evaluate the performance of ground systems as ground resistance, touch voltage and step voltage. The touch and step voltages are especially important to ensure safety of human body. In this paper, we measured the touch and step voltages by injection of power frequency and surge current. Also correlation between touch and step voltages is compared and analyzed for the same ground systems.

  • PDF

Study of Touch and Step Voltages with Grounding Grid Using Electrolytic Tank and Analysis Program

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Kill, Gyung-Suk
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • In order to analyze the potential rise of ground surface of grounding grid installed in buildings, the grounding simulator has been designed and fabricated as substantial and economical measures. This paper describes the study of touch and step voltages with grounding grid where earth leakage current is injected. To assess risk voltage of grounding grid, the grounding simulator and CDEGS program were used to obtain measured data and theoretical results of this study. The grounding simulator was composed of an electrolytic tank, AC power supply, a movable potentiometer, and test grounding electrodes. The potential rise was measured by grounding simulator, and the touch and step voltages were computed by CDEGS program. As a consequence, the touch voltage and step voltage above the grounding grid were very low, but were significantly increased near the edge of grounding grid.

Analysis of Touch Voltage and Step Voltage using a Potential Distribution Characteristic (전위분포특성을 이용한 접촉전압과 보폭전압의 분석)

  • Lee, Bok-Hee;Jung, Hyun-Uk;Choi, Jong-Hyuk;Cho, Sung-Cheol;Beak, Young-Hwan;Lee, Kyu-Sun;Ahn, Chang-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1474-1475
    • /
    • 2006
  • This paper describes touch and step voltage in the reinforced concrete and steel poles. Ground surface potential rises were measured as a function of the separation between pole and ground rod. Touch and step voltage are calculated on the basis of the distribution of ground surface potential rises. As a result, touch and step voltages strongly depend on the position of installation of ground rod.

  • PDF

Impulse Characteristics of Grounding Systems for Distribution Concrete Pole (배전용 전주의 접지 시스템에 대한 임펄스 특성)

  • Lee, B.H.;Jung, H.U.;Lee, S.B.;Lee, T.H.;Beak, Y.H.;Lee, K.S.;Ahn, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2286-2288
    • /
    • 2005
  • This paper describes impulse grounding impedance and touch voltage when impulse current is injected to grounding systems for distribution concrete pole. Impulse grounding impedance is a significant factor in analyzing transient grounding impedance. The touch voltage is measured in four directions. The maximum touch voltage was 520V and the minimum touch voltage was 47.3V when the input current was 100A.

  • PDF

Capacitive Touch Switch Regardless of Operating Frequency Using a Switched-Capacitor (스위치드 커패시터를 이용한 동작 주파수에 무관한 정전용량 터치스위치)

  • Lee, Mu-Jin;Seong, Kwang-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.88-94
    • /
    • 2013
  • This paper proposes a capacitive touch switch using a switched-capacitor. The proposed method charges capacitance for measurement using the switched-capacitor until the voltage across the capacitance reaches a threshold voltage. As the proposed method uses the number of times being charged to measure the capacitance, the method has no relation with the operating frequency of the switched-capacitor. This paper also shows the quantization resolution of the proposed method is related to the capacitance in the switched-capacitor and the threshold voltage, i.e., the resolution is improved when the capacitance in the switched-capacitor is decreased and the threshold voltage is increased. Simulation result shows the method gives 31fF quantization resolution when the capacitance in the switched-capacitor is 50fF and threshold voltage is 80% of the supply voltage.