• Title/Summary/Keyword: Touch interface

Search Result 267, Processing Time 0.029 seconds

SATS: Structure-Aware Touch-Based Scrolling

  • Kim, Dohyung;Gweon, Gahgene;Lee, Geehyuk
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1104-1113
    • /
    • 2016
  • Non-linear document navigation refers to the process of repeatedly reading a document at different levels to provide an overview, including selective reading to search for useful information within a document under time constraints. Currently, this function is not supported well by small-screen tablets. In this study, we propose the concept of structure-aware touch-based scrolling (SATS), which allows structural document navigation using region-dependent touch gestures for non-sequential navigation within tablets or tablet-sized e-book readers. In SATS, the screen is divided into four vertical sections representing the different structural levels of a document, where dragging into the different sections allows navigating from the macro to micro levels. The implementation of a prototype is presented, as well as details of a comparative evaluation using typical non-sequential navigation tasks performed under time constraints. The results showed that SATS obtained better performance, higher user satisfaction, and a lower usability workload compared with a conventional structural overview interface.

Learning System for Scientific Experiments with Multi-touch Screen and Tangible User Interface (멀티 터치스크린과 실감형 인터페이스를 적용한 과학 실험 학습 시스템)

  • Kim, Jun-Woo;Maeng, Jun-Hee;Joo, Jee-Young;Im, Kwang-Hyuk
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.461-471
    • /
    • 2010
  • Recently, Augmented Reality(AR) technologies have been emerged, which shows the types of digital contents integrating real and virtual worlds. To maximize the effect of AR technology, tangible user interface, which enables users to interact with the contents in the same way in which they manipulate objects in real world, is applied. In particular, we expect that the technologies are able to enhance learners' interests and degree of immersion, and produce new learning contents in order to maximize the effect of learning. In this paper, we propose a learning system for scientific experiments with multi-touch screen and tangible user interface. The system consists of an experiment table equipped with a large multi-touch screen and a realistic learning device that can detect the user's simple gestures. In real world, some scientific experiments involve high cost, long time or dangerous objects, but this system will overcome such hindrance and provide learners with a variety of experiment experience in realistic ways.

Multi - Modal Interface Design for Non - Touch Gesture Based 3D Sculpting Task (비접촉식 제스처 기반 3D 조형 태스크를 위한 다중 모달리티 인터페이스 디자인 연구)

  • Son, Minji;Yoo, Seung Hun
    • Design Convergence Study
    • /
    • v.16 no.5
    • /
    • pp.177-190
    • /
    • 2017
  • This research aims to suggest a multimodal non-touch gesture interface design to improve the usability of 3D sculpting task. The task and procedure of design sculpting of users were analyzed across multiple circumstances from the physical sculpting to computer software. The optimal body posture, design process, work environment, gesture-task relationship, the combination of natural hand gesture and arm movement of designers were defined. The preliminary non-touch 3D S/W were also observed and natural gesture interaction, visual metaphor of UI and affordance for behavior guide were also designed. The prototype of gesture based 3D sculpting system were developed for validation of intuitiveness and learnability in comparison to the current S/W. The suggested gestures were proved with higher performance as a result in terms of understandability, memorability and error rate. Result of the research showed that the gesture interface design for productivity system should reflect the natural experience of users in previous work domain and provide appropriate visual - behavioral metaphor.

An Implementation of Web Image Collector using Drag&Drop Mechanism (Drag&Drop 메커니즘을 이용한 웹 이미지 수집기의 구현)

  • Lee, Seon-Ung;Moon, Il-Young
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.1 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • Drag&Drop mechanism was formerly the clipboard of Microsoft Windows. Drag&Drop means that copy and paste functions using the clipboard are processed by a mouse event. The touch interface come info the spotlight not to speak of PCs, laptops and mobile phones. Mouse and touch interfaces make an environment to work easier and intuitive through visible interactions. In this paper, we implemented a web image collector to utilize Drag&Drop. And we proposed the how to apply and a utilizable plan from it.

  • PDF

The Design of Efficient User Environment on the FTIR Multi Touch (FTIR 멀티터치 테이블에서 효율적인 사용자 환경 개발)

  • Park, Sang-Bong;Ahn, Jung-Seo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 2012
  • In this paper, we develop the new gestures of screen control with fingers on the FTIR multi touch table. It also describes recognition of mobile devices on the table using infrared camera. The FTIR multi touch table was incovenient to the existiog Bluetooth connection, because it is not provided with an HID(Human Input Device) interface. The proposed data transmission method using mobile device is to relieve the inconvenience of the data transfer and proceed more effectively. The new gestures and data transmission method is verified by FTIR multi touch table that is implemented for testing.

Mixed-Mode Simulations of Touch Screen Panel Driver with Capacitive Sensor based on Improved Charge Pump Circuit (개선된 charge pump 기반 정전 센싱 회로를 이용한 터치 스크린 패널 드라이버의 혼성모드 회로 분석)

  • Yeo, Hyeop-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.319-324
    • /
    • 2012
  • This paper introduces a 2-dimensional touch screen panel driver based on an improved capacitive sensing circuit. The improved capacitive sensing circuit based on charge pump can eliminate the remaining charges of the intermediate nodes, which may cause output voltage drift. The touch screen panel driver with mixed-mode circuits was built and simulated using Cadence Spectre. Verilog-A models the digital circuits effectively and enables them to interface with analog circuits easily. From the simulation results, we can verify the reliable operations of the simple structured touch screen panel driver based on the improved capacitive sensing circuit offering no voltage drift.

Menu Layout for Touch-screen Phones Based on Various Grip Postures (다양한 파지 방법에 따른 터치스크린 폰 메뉴 레이아웃에 관한 연구)

  • Cho, Sung-Il;Park, Sung-Joon;Jung, Eui-S.;Im, Young-Jae;Choe, Jea-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.1
    • /
    • pp.52-58
    • /
    • 2010
  • The level of competition has reached the limits in cellular phone market and the cellular phone manufacture companies started to focus their solution in user interface. Design issues with controllability led the development and renovation of such products to the use of the touch-screen phone. Depending upon the readability, technical advances, portability and controllability, user satisfaction of touch-screen phones could vary significantly. In this research, the controllability was dealt in regard to various grip postures, in order to improve menu layout which fits for using the thumbs of both hands and a thumbs of single hand. Regression models are found to the suggest the location of buttons on the screen by redesigning the menu layout, it is expected to improve both controllability and satisfaction of the user. This result can be applicable not only to mobile phone design, but also to the design of various hand-held devices using a touch screen.

Development of a general purpose operator interface for a process control system (공정제어용 범용 Operator Interface 개발)

  • 이재만;김정훈;채영도
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.191-196
    • /
    • 1986
  • This paper describes the development of general purpose operator interface which uses a color graphics terminal with a touch-sensitive screen as the control console. Operators interact with a process through a collection of application-dependent displays generated interactively by users familiar with the physical process. The use of real-time operating system(iRMX-86) and multitasking results in a straightforward and reliable development which may easily be extended to support multiple devices of varying types in the control console.

  • PDF

GripLaunch: a Novel Sensor-Based Mobile User Interface with Touch Sensing Housing

  • Chang, Wook;Park, Joon-Ah;Lee, Hyun-Jeong;Cho, Joon-Kee;Soh, Byung-Seok;Shim, Jung-Hyun;Yang, Gyung-Hye;Cho, Sung-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2006
  • This paper describes a novel way of applying capacitive sensing technology to a mobile user interface. The key idea is to use grip-pattern, which is naturally produced when a user tries to use the mobile device, as a clue to determine an application to be launched. To this end, a capacitive touch sensing system is carefully designed and installed underneath the housing of the mobile device to capture the information of the user's grip-pattern. The captured data is then recognized by dedicated recognition algorithms. The feasibility of the proposed user interface system is thoroughly evaluated with various recognition tests.

Implementation of 24-Channel Capacitive Touch Sensing ASIC (24 채널 정전 용량형 터치 검출 ASIC의 구현)

  • Lee, Kyoung-Jae;Han, Pyo-Young;Lee, Hyun-Seok;Bae, Jin-Woong;Kim, Eung-Soo;Nam, Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a 24 channel capacitive touch sensing ASIC. This ASIC consists of analog circuit part and digital circuit part. Analog circuits convert user screen touch into electrical signal and digital circuits represent this signal change as digital data. Digital circuit also has an I2C interface for operation parameter reconfiguration from host machine. This interface guarantees the stable operation of the ASIC even against wide operation condition change. This chip is implemented with 0.18 um CMOS process. Its area is about 3 $mm^2$ and power consumption is 5.3mW. A number of EDA tools from Cadence and Synopsys are used for chip design.