• Title/Summary/Keyword: Touch controller

Search Result 57, Processing Time 0.02 seconds

Touch Position Recovery Algorithm for Differential Sensing Touch Screen

  • Kim, Ji-Ho;Won, Dong-Min;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.106-114
    • /
    • 2016
  • Differential sensing methods are more effective in alleviating panel noise than single-line sensing, and thus have been increasingly used in the touch screen industry. However, they have a drawback: they tend to cancel out multiple touches and need touch position recovery algorithms. This paper introduces a novel algorithm of touch position recovery for differential sensing, which is a low-complexity but high-accuracy approach for determining multiple touch positions. We have implemented the proposed method in a touch screen controller system on a chip. In the simulation experiments using realistic touch screen models and a differential sensing circuit, the algorithm exhibited a high detection performance of a signal-to-noise ratio gain of up to 52.21 dB. Therefore, we can conclude that the proposed method is substantially more accurate than the previous method. Further, the proposed method incurs little or no overhead in terms of the detection speed and the chip size.

Design and Implementation of Low Power Touch Screen Controller for Mobile Devices (모바일용 저전력 터치 스크린 제어 회로 설계 및 구현)

  • Park, Sang-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.279-283
    • /
    • 2012
  • In is paper, we design and implement the low power, high speed touch screen controller that calculates and outputs the coordinate of touch point on the touch screen of mobile devices. The system clock is 10HMz, the number of input channels is 21, standby current is $20{\mu}A$, dynamic range of input is 140pF~400pF and the response time is 0.1ms/frame. It contains the power management unit for low power, automatic impedance calibration unit in order to adapt to humidity, temperature and evaluation board, adjacent key and pattern interference suppression unit, serial interface unit of I2C and SPI. The function and performance is verified by using FPGA and $0.18{\mu}m$ CMOS standard process. The implemented touch screen is designed for using in the double layer ITO(Indium Thin Oxide) module with diamond pattern and single layer ITO module for cost-effective which are applied to mobile phone or smart remote controller.

An Implementation of Driving Circuit for Resistive Touch Panel (저항막식 터치 패널의 구동회로 제작)

  • Han, Hyung-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.36-39
    • /
    • 2009
  • In this paper, we propose a 4-wire type driving circuit for resistive touch panel which was manufactured at the lab. The circuit is designed by using the touch panel controller ADS7846 and AVR microcontroller board. The test result shows that the designed circuit can give and transmit the position information of touch panel to the computer.

  • PDF

Design of an Infrared Multi-touch Screen Controller using Stereo Vision (스테레오 비전을 이용한 저전력 적외선 멀티 터치스크린 컨트롤러의 설계)

  • Jung, Sung-Wan;Kwon, Oh-Jun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.68-76
    • /
    • 2010
  • Touch-enabled technology is increasingly being accepted as a main communication interface between human and computers. However, conventional touchscreen technologies, such as resistive overlay, capacitive overlay, and SAW(Surface Acoustic Wave), are not cost-effective for large screens. As an alternative to the conventional methods, we introduce a newly emerging method, an optical imaging touchscreen which is much simpler and more cost-effective. Despite its attractive benefits, optical imaging touchscreen has to overcome some problems, such as heavy computational complexity, intermittent ghost points, and over-sensitivity, to be commercially used. Therefore, we designed a hardware controller for signal processing and multi-coordinate computation, and proposed Infrared-blocked DA(Dark Area) manipulation as a solution. While the entire optical touch control took 34ms with a 32-bit microprocessor, the designed hardware controller can manage 2 valid coordinates at 200fps and also reduce energy consumption of infrared diodes from 1.8Wh to 0.0072Wh.

Touch Screen Sensing Circuit with Rotating Auto-Zeroing Offset Cancellation

  • Won, Dong-Min;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.189-196
    • /
    • 2015
  • In this paper, we present a rotating auto-zeroing offset cancellation technique, which can improve the performance of touch screen sensing circuits. Our target touch screen detection method employs multiple continuous sine waves to achieve a high speed for large touch screens. While conventional auto-zeroing schemes cannot handle such continuous signals properly, the proposed scheme does not suffer from switching noise and provides effective offset cancellation for continuous signals. Experimental results show that the proposed technique improves the signal-to-noise ratio by 14 dB compared to a conventional offset cancellation scheme. For the realistic simulation results, we used Cadence SPECTRE with an accurate TSP model and noise source. We also applied an asymmetric device size (10% MOS size mismatch) to the OP Amp design in order to measure the effectiveness of offset cancellation. We implemented the proposed circuit as part of a touch screen controller system-on-chip by using a Magnachip/SK Hynix 0.18-µm complementary metal-oxide semiconductor (CMOS) process.

Arc welding robot controller (아크 용접 로보트 제어기)

  • 김성권;김동일;황찬영;윤명균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.270-275
    • /
    • 1993
  • In this paper, the arc welding robot controller using a touch sensor and a arc sensor is presented. The controller is composed of robot controller parts for moving torch, and arc welding controller for welding and tracking. In the controller, an compensated data is generated to control robot trajectory and seam tracking by the arc sensor function. The data is obtained by integration of arc current. Experimental results are presented confirming the controller performance.

  • PDF

A Fast Sensing Method using Concurrent Driving and Sequential Sensing for Large Capacitance Touch Screens (동시구동 및 순차센싱을 이용한 대형 정전용량 터치스크린용 고속 센싱 기법)

  • Mohamed, Mohamed G.A.;Kim, HyungWon;Cho, Tae-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.62-70
    • /
    • 2015
  • Recently the demand for projected capacitance touch screens is sharply growing especially for large screens for medical devices, PC monitors and TVs. Large touch screens in general need a controller of higher complexity. They usually have a larger number of driving and sensing lines, and hence it takes longer to scan one frame for touch detection leading to a low frame scan rate. In this paper, a novel touch screen control technique is presented, which scans each frame in two steps of simultaneous multi-channel driving. The first step is to drive all driving lines simultaneously and determine which sensing lines have any touch. The second step is to sequentially rescan only the touched sensing lines, and determine exact positions of the touches. This technique can substantially increase the frame scan rate. This technique has been implemented using an FPGA and an AFE board, and tested using a commercial 23-inch touch screen panel. Experimental results show that the proposed technique improves the frame scan rate by 8.4 times for the 23-inch touch screen panel over conventional methods.

Implementation and Design of Control Circuit for Touch Screen with Faster Response Time (고속 응답 터치스크린 제어회로 설계 및 구현)

  • Park, Sang-Bong;Heo, Jeong-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.155-159
    • /
    • 2014
  • In this paper, we describe algorithm and digital circuit implementation of touch screen controller that has the faster response time. We enhance the response time by adaptive search method instead of linear search method of step level in the pulse width decision. The faster response time might bring effects of feeling better in the touch keyboard. The performance of the proposed algorithm and function is verified by using logic simulation and FPGA test board. It is expected to use in the mobile touch screen.

Frequency Division Concurrent Sensing Method for High-Speed Detection of Large Touch Screens (대형 터치스크린의 고속감지를 위한 주파수분할 동시센싱 기법)

  • Jang, Un-Yong;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.895-902
    • /
    • 2015
  • This paper presents a high-speed sensing and noise cancellation technique for large touch screens, which is called FDCS (Frequency Division Concurrent Sensing). Most conventional touch screen detection methods apply excitation pulses sequentially and analyze the sensing signals sequentially, and so are often unacceptably slow for large touch screens. The proposed technique applies sinusoidal signals of orthogonal frequencies simultaneously to all drive lines, and analyzes the signals from each sense line in frequency domain. Its parallel driving allows high speed detection even for a very large touch screens. It enhances the sensing SNR (Signal to Noise Ratio) by introducing a frequency domain noise filtering scheme. We also propose a pre-distortion equalizer, which compensates the drive signals using the inverse transfer function of touch screen panel to further enhance the sensing SNR. Experimental results with a 23" large touch screen show that the proposed technique enhances the frame scan rate by 273% and an SNR by 43dB compared with a conventional scheme.

Dual Sensing with Voltage Shifting Scheme for High Sensitivity Touch Screen Detection (고감도 터치스크린 감지를 위한 양방향 센싱과 전압쉬프팅을 이용한 센싱 기법)

  • Seo, Incheol;Kim, HyungWon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.71-79
    • /
    • 2015
  • This paper proposes a new touch screen sensing method that improves the drawback of conventional single-line sensing methods for mutual capacitance touch screen panels (TSPs). It introduces a dual sensing and voltage shifting method, which reduces the ambient noise effectively and enhances the touch signal strength. The dual sensing scheme reduces the detection time by doubling the integration speed using both edges of excitation pulse signals. The voltage shifting method enhances the signal-to-noise ratio (SNR) by increasing the voltage range of integrations, and maximizing the ADC's input dynamic range. Simulation and experimental results using a commercial 23" large touch screen show an SNR performance of 43dB and a scan rate 2 times faster than conventional schemes - key properties suited for a large touch screen panels. We implemented the proposed method into a TSP controller chip using Magnachip's CMOS 0.18um process.