• Title/Summary/Keyword: Total void ratio

Search Result 50, Processing Time 0.027 seconds

A Study on the Properties of Foamed Concrete with Plaster Using the Experimental Design (실험계획법을 이용한 석고 혼입 기포콘크리트의 특성에 관한 연구)

  • Lee, Sang-An;Kim, Wha-Jung;Yoon, Sang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.130-137
    • /
    • 2013
  • This research was performed through the experimental design to get the statistical analysis on foamed concrete mixed plaster with hydrogen peroxide. In this experiment, we set the ratio of each material, which part of lightweight concrete, as experimental factors and evaluated on the mechanical properties by statistical analysis for response variables obtained from experiments. Experimental factors are plaster replacement, water binder ratio, and hydrogen peroxide ratio. Response variables are dry density, compressive strength, and flexural strength. Mixing design of the foamed concrete set up a total of 15 experimental points by Box-Behnken (BB) method of the response surface analysis. Thus, the results of a study were summarized as follows. Values of the probability in experimental factors (plaster replacement, water binder ratio and hydrogen peroxide ratio) on the response variables were estimated to be significant at the 95% of confidence limit. On response surface analysis for dry density of foamed concrete, water binder ratio and hydrogen peroxide ratio were estimated to be significant (${\alpha}$ = 0.05), and the relationship between the amount of void and the water content for dry density is inverse proportional. On response surface analysis for the compressive strength of foamed concrete, water binder ratio, hydrogen peroxide ratio and (hydrogen peroxide ratio)$^2$ was estimated to be significant (${\alpha}$ = 0.05). On response surface analysis for the flexural strength of foamed concrete, water binder ratio, hydrogen peroxide ratio was estimated to be significant (${\alpha}$ = 0.05). Through multi response surface analysis, we found the optimal area that meets performance goals.

A Study of Three Dimensional Numerical Analysis on Vacuum Consolidation

  • Chung, Youn ln
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.5-20
    • /
    • 1997
  • A governing equation of uncoupled three dimensional finite strain theory of consolidation is presented. This equation is suitable for relatively thick layers, possessing large strain, non-linear material property, and variable permeability. A special numerical solution procedure has to be adopted for the finite difference scheme because the solution is not stable in using Forward-Time Centered-Space (FTCS) method and the governing equation is highly non-linear. The solution is capable of predicting settlement with respect to time. The results predicted by the developed method of analysis have been compared with those of experimental tests on different types of highly compressible soils with vertical wick drain. The uncoupled three dimensional finite strain theory of consolidation appears to predict settlement behavior well. A detailed comparison shows good agreement in terms of total settlement, and reasonable agreement with respect to time.

  • PDF

Geotechnical Engineering Characteristics and Consolidation Settlement Estimation of Waste Lime Landfill (폐석회 매립지반의 지반공학적 특성 및 압밀침하량산정)

  • Shin, Eun-Chul;Lee, Ae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study is to examine the consolidation characteristics of waste landfill from sodium carbonate production. The waste lime is a byproduct from the production of soda ash. The consolidation settlement of waste lime landfill was determined for waste lime specimen which obtained from the field boring. The consolidation tests are conducted for determination of the primary and secondary consolidation settlements. The waste lime is classified as an organic soil with high plasticity. As a result of an organic content test, the contents of organic matter in waste lime is much higher than that of normal clay. Finally, the total consolidation settlement of waste lime landfill is calculated by using a theoretical method and computer program for the given initial void ratio, compression index, and embankment height.

Analysis of Disc Degeneration in a Poroelastic Spinal Motion Segment FE Model (다공탄성체 척추운동분절 유한요소 모델을 이용한 추간판의 퇴화과정 분석)

  • Woo D.G.;Kim Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.248-251
    • /
    • 2005
  • To investigate the degeneration process in the intervertebral disc, a three dimensional (3D) poroelastic finite-element (FE) model was developed. Disc was modeled as two different regions, such as annulus modeled with fiber reinforced 20 node poroelastic ground matrix and nucleus having large porosity. Excess Von Mises stress in the disc element assumed to be a possible source of degeneration under compressive loading condition. Recursive calculation was continued until the desired convergence was attained by changing the permeability and porosity of those elements, which could be predicted from the previous iteration. The degenerated disc model showed that relatively small compressive stresses were generated in the nucleus elements compared to normal disc. Its distribution along the sagittal plane was matched well with a previously reported experimental result. Contrasts to this result, pore pressures in the nucleus were higher than those in the normal disc. Total stress indicated similar values for two different models. This new approach using poroelastic modeling could provide the explanation of the interaction between fluid and solid matrix in the disc during the degeneration process.

  • PDF

Experimental study on treatment of waste slurry by vacuum preloading with different conditioning agents

  • Wu, Yajun;Jiang, Haibo;Lu, Yitian;Sun, Dean
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.543-551
    • /
    • 2019
  • In China, serious environmental problems are induced by the extremely soft construction waste slurries in many urban areas, and there is no appropriate method to treat it presently. In this paper, four model tests were conducted to investigate the efficiency of waste slurry treatment by combining three conditioning agents which can change characteristics of the slurries with a traditional vacuum preloading method. The tests of size analysis of particle aggregate were conducted to investigate the influence of different conditioning agents on the size distributions of particle aggregate. During the model test, the discharged water volumes were monitored. The pore-size distribution and void ratio of the waste slurries after the vacuum preloading were measured by mercury intrusion porosimetry (MIP). It is found that 1) During the natural precipitation, volume of water out of the organic agent is higher than that of the mixed agent, but it is smaller than that of the mixed agent in the vacuum preloading stage; 2) the mixed agent has a higher total volume of water out than the organic agent and the inorganic agent after test, while the organic agent and the inorganic agent have little difference with respect to the drainage effect. The results demonstrate that the combination of mixed conditioning agent and vacuum preloading for the solid-liquid separation in waste slurry has a satisfactory effect and can be applied in engineering practice.

Physical Properties of Soils in Relation to Forest Composition in Moist Temperate Valley Slopes of the Central Western Himalaya

  • Sharma, C.M.;Gairola, Sumeet;Ghildiyal, S.K.;Suyal, Sarvesh
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.117-129
    • /
    • 2010
  • The present study was undertaken in moist temperate forest of Mandal-Chopta area in the Garhwal region of Uttarakhand, India. The aim of the present study was to assess the physical properties of soils in relation to the forest structure and composition. Twelve forest types according to the altitude, slope aspect and species compositions were selected for the study. Physical properties of soil i.e., soil colour, soil texture (per cent of sand, silt and clay), moisture content, water holding capacity, porosity, bulk density (gm/$cm^3$) and void ratio were analyzed for three different depths viz., (i) 'upper' (0-10 cm), (ii) 'middle' (11-30 cm) and (iii) 'lower' (31-60 cm) in all the selected forest types. Phytosociological and diversity parameters viz. total basal cover ($Gha^{-1}$), stem density ($Nha^{-1}$), tree species richness, Simpson concentration of dominance and Shannon-Wiener diversity index were also calculated for each forest type. This study also provides the comparisons between the results of physical analysis of the present study with numerous other previous studies in the temperate Himalayan region of the Uttarakhand.

Purification and Characterization of Complement System Activating Polysaccharide from the Bark of Kalopanax pictus N. (음나무 수피로부터 보체계 활성화 다당의 정제 및 특성)

  • Shin, Keum;Ra, Kyung-Soo;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.73-84
    • /
    • 1992
  • It was observed that the hot-water extract of the bark of Kalopanax pictus N. had the highest anti-complementary activity among the 11 kinds of forest materials. Methanol-and ethanol-soluble portions had low anti-complementary activities, but crude polysaccharide. HKP-0 had a high activity of 80%. HKP-0 contained 54.8% of total sugar and 27.9% of protein. The neutral sugars of HKP-0 consisted of mainly arabinose, galactose and glucose. HKP-4 fraction obtained by cetavlon treatment of HKP-0 showed the highest anti-complementary activity of 90%. The activity was not changed by pronase digestion bu decreased greatly by periodate oxidation. HKP-4 consisted of mainly arabinose and glucose with molar ratio of 1.0 : 22.4, HKP-4-I, an unabsorbed fraction from HKP-4 on DEAE Sepharose CL-6B column showed higher yield and activity than those of absorbed fractions. HKP-4-I was homogeneous, and its molecular weight was about 25,000. HKP-4-I contained 84.0% of neutral sugar and consisted of arabinose and glucose with molar ratio of 1.0 : 11.2. The anti-complementary activity of HKP-4-I was not decreased by the treatment of polymyxin B, and the polysaccharide activated both classical and alternative pathway in complement system. Void volume fraction obtained from HKP-4-I hydrolyzed with ${\alpha}$-amylase on Sephadex G-25 column only had a high anti-complementary activity.

  • PDF

Prediction of Landslide Probability around Railway using Decision Tree Model (Decision Tree model을 이용한 철도 주변 산사태 발생가능성 예측)

  • Yun, Jung-Mann;Song, Young-Suk;Bak, Gueon Jun;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.129-137
    • /
    • 2017
  • In this study, the prediction of landslide probability was performed to the study area located in ${\bigcirc}{\bigcirc}$ area of Muan-gun, Jeonnam Province around Honam railway using the computer program SHAPP ver 1.0 developed by a decision tree model. The soil samples were collected at total 8 points, and soil tests were performed to measure soil properties. The thematic maps of soil properties such as coefficient of permeability and void ratio were made on the basis of soil test results. The slope angle analysis of topography was performed using a digital map. As the prediction result of landslide probability, 435 cells among total 15,552 cells were predicted to be in the event of landslides. Therefore, the predicted area of occurring landslides may be $43,500m^2$ because the analyzed cell size was $10m{\times}10m$.

Prediction of Slope Hazard Probability around Express Way using Decision Tree Model (의사결정나무모형을 이용한 고속도로 주변 급경사지재해 발생가능성 예측)

  • Kim, Chan-Kee;Bak, Gueon Jun;Kim, Joong Chul;Song, Young-Suk;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • In this study, the prediction of slope hazard probability was performed to the study area located in Hadae-ri, Woochun-myeon, Hoengsung-gun, Gangwon Province around Youngdong express way using the computer program SHAPP ver 1.0 developed by a decision tree model. The soil samples were collected at total 10 points, and soil tests were performed to measure soil properties. The thematic maps of soil properties such as coefficient of permeability and void ratio were made on the basis of soil test results. The slope angle analysis of topography was performed using a digital map. As the prediction result of slope hazard probability, 2,120 cells among total 27,776 cells were predicted to be in the event of slope hazards. Therefore, the predicted area of occurring slope hazards may be $53,000m^2$ because the analyzed cell size was $5m{\times}5m$.

Fundamental Properties of MgO Base Ceramic Mortar for Concrete Repair Material (MgO계 세라믹 모르타르를 활용한 콘크리트 보수재료의 기초물성평가)

  • Park, Joon-Woo;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.407-413
    • /
    • 2017
  • The fundamental property of magnesia phosphate cement (MPC) for concrete repair material was investigated in this research. For mechanical properties, setting time, compressive strength and tensile/flexural bond strength were measured, and hydration products were detected by X-ray diffraction. The specimens were manufactured with dead burnt magnesia and potassium dihydrogen phosphate was admixed to activate the hydration of magnesia and a borax was used as a retarder. To observe the pore structure and ionic permeability of MPC mortar, mercury intrusion porosimetry was performed together with rapid chloride penetration test (RCPT). As a result, time to set of Fresh MPC mortar was in range of 16 to 21 min depend on the M/P ratio. Borax helped delaying setting time of MPC to 68 min. The compressive strength of MPC with M/P of 4 was sharply developed to 30 MPa within 12 hours. The compressive strength of MPC mortar was in range of 11.0 to 30.0 MPa depend on the M/P ratio at 12 hours of curing. Both tensile and flexural bond strength of MPC to old substrate (i.e. MPC; New substrate to OPC; Old substrate) were even higher than ordinary Portland cement mortar (i.e. [OPC; New substrate] to [OPC; Old substrate]) does, accounting 19 and 17 MPa, respectively. The total pore volume of MPC mortar was lower than that of OPC mortar. MPC mortar had the entrained air void rather than capillary pore. The RCPT showed that total charge passed of OPC mortar had more than that of MPC mortar, which can be explained by the pore volume and pore distribution.