• Title/Summary/Keyword: Total shear stress

Search Result 218, Processing Time 0.025 seconds

Yielding Curve of Isotropic and Anisotropic Consolidated Compacted Weathered Granite Soil (등방 및 비등방 압밀된 다짐풍화화강토의 항복곡선)

  • 정진섭;양재혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.103-115
    • /
    • 2002
  • During this study, various stress path tests in previous isotropic and anisotropic (compression and tension) stress histories are performed on weathered granite soil sampled at Iksan, Jeonbuk. Yielding points are determined from various stress-strain curves(stress ratio-shear strain, volumetric strain, normalized energy and dissipated total energy curves). The shape and characteristics of isotropic and anisotropic yielding curves are examined. The main results are summarized as follows . 1) Yielding curries defined from stress ratio - normarized energy and dissipated total energy curves show almost perfect ellipse. 2) Directions of plastic strain incremental vector are not perpendicular to yielding curve. 3) Normarized energy and dissipated total energy spread with similar tendency with respect to yielding currie in stress space.

Wall Shear Stress and Flow Patterns in Unruptured and Ruptured Anterior Communicating Artery Aneurysms Using Computational Fluid Dynamics

  • Lee, Ui Yun;Jung, Jinmu;Kwak, Hyo Sung;Lee, Dong Hwan;Chung, Gyung Ho;Park, Jung Soo;Koh, Eun Jeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.689-699
    • /
    • 2018
  • Objective : The goal of this study was to compare several parameters, including wall shear stress (WSS) and flow pattern, between unruptured and ruptured anterior communicating artery (ACoA) aneurysms using patient-specific aneurysm geometry. Methods : In total, 18 unruptured and 24 ruptured aneurysms were analyzed using computational fluid dynamics (CFD) models. Minimal, average, and maximal wall shear stress were calculated based on CFD simulations. Aneurysm height, ostium diameter, aspect ratio, and area of aneurysm were measured. Aneurysms were classified according to flow complexity (simple or complex) and inflow jet (concentrated or diffused). Statistical analyses were performed to ascertain differences between the aneurysm groups. Results : Average wall shear stress of the ruptured group was greater than that of the unruptured group (9.42% for aneurysm and 10.38% for ostium). The average area of ruptured aneurysms was 31.22% larger than unruptured aneurysms. Simple flow was observed in 14 of 18 (78%) unruptured aneurysms, while all ruptured aneurysms had complex flow (p<0.001). Ruptured aneurysms were more likely to have a concentrated inflow jet (63%), while unruptured aneurysms predominantly had a diffused inflow jet (83%, p=0.004). Conclusion : Ruptured aneurysms tended to have a larger geometric size and greater WSS compared to unruptured aneurysms, but the difference was not statistically significant. Flow complexity and inflow jet were significantly different between unruptured and ruptured ACoA aneurysms.

A Comparative Study on Design by Actual Stress and Design by Member Strength in Bolt Connections (철골볼트 접합부 존재응력설계와 부재내력설계의 비교 연구)

  • 이만승
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.94-101
    • /
    • 1999
  • There are two methods commonly used in design of splice plate connection of frame structure. The one is Design by Actual Stress which can sufficiently transfer actual force to an adjacent member using rows of bolts. The other is Design by Member Strength which is able to transfer total allowable stress of effective section area to a connected member. In real design, as a matter of convenience, Standard Connection Drawings have used according to Design by Member Strength. But this method underestimate connection force in shear connection where large connection moment occured. In this study, these Design methods are compared by connection moment in shear connections. and the adequate use of them are recommended. Also In order to evaluate more accurately the actual stress of splice plate of flange on moment. connection, a new calculation method of it is recommended.

  • PDF

A Study on the Constitutive Behavior of Undisturbed Weathered Soils at Small-to-Large Strain Conditions (미소변형률 및 대변형률 조건에서 불교란 풍화토의 구성거동에 관한 연구)

  • 오세붕;이영휘;안영대
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.139-146
    • /
    • 2001
  • Undrained triaxial tests were peformed for a weathered soil, which includes local measurement using LVDT The behavior from small In large strain conditions could be evaluated consistently through a triaxial test, The stress-strain relationship of undisturbed samples were compared with the disturbed and the shear moduli in the small strain level had the almost same values. Especially the shear moduli were mostly affected by the initial condition of water contents. An anisotropic hardening model based on the total stress concept could predict the stress-strain relationship accurately, which makes it possible to analyze the geotechnical problem reasonably for the weathered soil.

  • PDF

An instability criterion for viscoelastic flow past a confined cylinder

  • Dou, Hua-Shu;Phan-Thien, Nhan
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.15-26
    • /
    • 2008
  • It has been known that there is a viscoelastic instability in the channel flow past a cylinder at high Deborah (De) number. Some of our numerical simulations and a boundary layer analysis indicated that this instability is related to the shear flow in the gap between the cylinder and the channel walls in our previous work. The critical condition for instability initiation may be related to an inflection velocity profile generated by the normal stress near the cylinder surface. At high De, the elastic normal stress coupling with the streamline curvature is responsible for the shear instability, which has been recognized by the community. In this study, an instability criterion for the flow problem is proposed based on the analysis on the pressure gradient and some supporting numerical simulations. The critical De number for various model fluids is given. It increases with the geometrical aspect ratio h/R (half channel width/cylinder radius) and depends on a viscosity ratio ${\beta}$(polymer viscosity/total viscosity) of the model. A shear thinning first normal stress coefficient will delay the instability. An excellent agreement between the predicted critical Deborah number and reported experiments is obtained.

Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory

  • Fekrar, A.;El Meiche, N.;Bessaim, A.;Tounsi, A.;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.91-107
    • /
    • 2012
  • In this research, mechanical buckling of hybrid functionally graded plates is considered using a new four variable refined plate theory. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solution of a simply supported rectangular plate subjected to in-plane loading has been obtained by using the Navier method. The effectiveness of the theories is brought out through illustrative examples.

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Zhu, Zheming
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.927-935
    • /
    • 2018
  • The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

Shear Performance Evaluation at the Interface Between CLT and Concrete (구조용 집성판(CLT)-콘크리트 경계면의 전단성능 평가)

  • Park, Keum-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 2021
  • An experimental study was carried out to evaluate the shear performance at the interface composed of structural laminates and concrete. The main variables are the number of CLT layers and the shape of the shear connector. The number of CLT layers consisted of 3 and 5 layers. A total of 6 test specimens for shear performance evaluation were prepared in the form of a shear connector, a direct screw type and a vertically embedded type. As a result of the experiment, similar behavior was shown in all specimens, regardless of the number of layers, including direct screw type (SC series) and vertically embedded type (VE series). The behavior at the joint surface was damaged due to the occurrence of initial shear cracks, expansion of shear groove cracks, and splaying at the interface after the maximum load.After the maximum load, the shear strength decreased gradually due to the effect of the shear connector. It can be seen that the shear strength of all specimens is determined by shear and compression stress failure of concrete at the interface of the notch joint.

Influence of Analysis Models on Variation of Ground Response during Earthquake (지반응답해석기법의 차이에 의한 지반응답 분산도 평가)

  • Kim, Sung-Ryul;Choi, Jae-Soon;Kim, Soo-Il;Park, Dae-Young;Park, Seong-Yong;Kim, Ki-Poong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF