• Title/Summary/Keyword: Total porosity

Search Result 282, Processing Time 0.031 seconds

Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent (기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

Analysis and Evaluation of Lake Sediment

  • Hwang, Jong-Yeon;Han, Eui-Jung;Kim, Tae-Keun;Yu, Soon-Ju;Yoon, Young-Sam;Chung, Yang-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.5-14
    • /
    • 1998
  • This study was performed to estimate interrelation between characteristics of sediment and nutrient releare from sediment in Dae-cheong lake. For the investigations, sediments were sampled in June and October 1997 at fish farms, embayment, and the main stream of Dae-cheong lake. Items for investigation are as follows; water content, weight loss on ignition(IG), porosity of sediment, Total Kjeldahl Nitrogen(TKN), content of element(H, N, C), nutrient release rate. Water content and porosity were measured to conjecture the physical trait and grain size. And weight loss on ignition was measured to determine the contents of organic substance. For the determination of nutrient release rate, $PO_4-P$ and $NH_4-N$ concentration of interstitial water and overlying water were measured. Release rate of nutrients which has direct influenced upon the water quality were 0.05-8.63mg-$P/m^2{\cdot}day$ and 4.99-36.56mg-$N/m^2{\cdot}day$. And it was found that release rate was measured higher in the 1st sampling than in the 2nd sampling. And for determination of the humus level of sediment, carbon and nitrogen content were measured by using elemental analyzer. Generally, C/N ratio is used to determine humus level of lake sediment. As a result of elemental analysis, C/N ratio was determined in the range of 7.64~11.55, so humus level of Dae-cheong lake sediment was estimated from mesohumic state to oligohumic state.

  • PDF

Strength and Pore Characteristics of Alkali-activated Slag-Red Mud Cement Mortar used Polymer According to Red Mud Content (레드머드 대체율에 따른 폴리머 혼입 알칼리활성화 슬래그-레드머드 시멘트모르타르의 강도 및 기공특성)

  • Kwon, Seung-Jun;Kang, Suk-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • The alkali-slag-red mud(ASRC) cement belongs to clinker free cementitious material, which is made from alkali activator, blast-furnace slag(BFS) and red mud in designed proportion. This study is to investigate strength and pore characteristics of alkali-activated slag cement(NC), clinker free cementitious material, and ordinary portland cement(C) mortars using polymer according to red mud content. The results showed that the hardened alkali-activated slag-red mud cement paste was mostly consisted of C-S-H gel, being very fine in size and extremely irregular in its shape. So the hardened ASRC cement paste has lower total porosity, less portion of larger pore and more portion of smaller pore, as compared with those of hardened portland cement paste, and has higher strength within containing 10 wt.(%) of alkali-activated slag cement(NC) substituted by red mud.

Economic Evaluation of Crops Grown under Different Soil Improvement Methods in Newly-reclaimed Sloped Land (신개간지(新開墾地) 토양개량방법별(土壤改良方法別) 작물(作物)의 경제성(經濟性) 검정(檢定))

  • Hur, Bong Koo;Kim, Moo Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.256-260
    • /
    • 1995
  • This study was carried out to select economic-crops according to the improvement methods of newly-reclaimed soils. Silage corn, soybean, Job's tears and sweet potato were cultivated under 6 treatments including integrated improvement plot, control plot, compost plot, subsoiling plot, phosphate plot and lime plot on the Songjeong loam from 1985 to 1988. Crop yields and soil physical properties were investigated throughout the experiment. Soil porosity in the sweet potato plots were highest. In case of cultivated years, those of 4th year were lowest. Averaged yield increasing ratios of silage corn, soybean, job`s tears and sweet potato in the integrated improvement plots were 132%, 29%, 49% and 59%, respectively. And that of 5 soil improved treatments for 4 crops were 53%, 15%, 25% and 38%, respectively. After subtraction of the total expenses of soil conditioners, the economical efficiency of soil improvements were clear in the 4 crops except the compost plot of silage corn. That of sweet potato plot was the highest.

  • PDF

Prediction of Physical Properties in the Design of Mono-Acetate Filter Cigarette by Response Surface Methodology (반응표면 실험 계획법에 의한 Mono-Acetate 필터담배 설계의 물리성 예측)

  • 김영호;이영택;김성한;김윤동;임광수;김용태
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.3-13
    • /
    • 1994
  • To minimize the time ordinarily spent in mono filter cigarette design, we studied the relationship between major seven independant variables ; filament(X1) and total denier(X2), porosity of the aller plug wrap(X3), filter length(X4), Porosity of the tip paper(X5) and cigarette paper(X6) and net weight of the reference cut tobacco(X7). Ninty trial numbers were obtained as a results of using rotatable central composite design and it is analyzed by the multiple regression analysis with stepwise in SAS/pc under restricted conditions. That is, UPD (Y1) = 82.96 - 3.80X1 + 2.50X2 - 3.29X3 - 3.15X5 - 0.83X22 + 1.88X5X6 - 1.38 X5X7(R2: 0.63), EPD(Y2) : 120.91 - 5.70X1 + 3.60X2 + 4.23X4 - 0.93X6 + 4.06X7 (R2=0.84), TVR(Y3) = 49.70 - 0.78X1 + 3.60X3 + 2.00X4 + 4.20X5 - 0.93X6 + 2.64X7 - 1.07X1X2 + 1.0IX1 X3 + 1.05X2X6 + 0.45X22 - 0.64X42 + 1.29X4X6 - 0.97X4X7 - 1.28X5X6 + 1.53X5X7 + 1.39X6X7(R2=0.65), and EVR(Y4) : 3.24-0.21X3-0.20X4 -0.24X5+0.67X6+0.26X4X7 (R2=0.55), where EPD : encapsulated pressure drop, VPD : unencapsulated pressure drop, TVR ; tip ventilation rate, and En : envelope ventilation rate. All variables in the model are significant at the 0.05 level.

  • PDF

Tailoring the Dielectric and Mechanical Properties of Si3N4 Ceramics (질화규소 세라믹의 유전 및 기계적 특성 제어에 관한 연구)

  • Lee, Seung Jun;Yong, Seok-Min;Park, Jin-Woo;Choi, Jaeho;Baek, Seungsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.760-766
    • /
    • 2018
  • The present study investigates the effect of PMMA and BN content on microstructure, mechanical and dielectric properties of silicon nitride($Si_3N_4$) ceramics in $Y_2O_3-Al_2O_3$ additive system. The total additive content was fixed at 8 wt.% and the amount of PMMA varies from 0 to 40 wt.% and BN varies from 0 to 36 wt.%, respectively. The crystalline phases of the samples were determined by X-ray diffraction analysis. All the sintered sample shows complete transformation of ${\alpha}$ to ${\beta}-Si_3N_4$ during the sintering process indicated that the phase transformation was unaffected by the PMMA or BN content. However, the microstructure shows that the residual porosity increased with increasing PMMA and BN content. In addition, the flexural strength and the dielectric constant decrease with addition of PMMA and BN due to the residual porosity. This article provides empirical study of design parameters for $Si_3N_4$-based radome materials.

Engineering properties of pervious concretes produced with recycled aggregate at different aggregate-to-cement ratio

  • Briar K. Esmail;Najmadeen M. Saeed;Soran R. Manguri;Mustafa Gunal
    • Advances in concrete construction
    • /
    • v.17 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Due to its capacity to address urgent environmental challenges connected to urbanization and stormwater management, pervious concrete, a sustainable and innovative material, has attracted a lot of attention recently. The aim of this study was to find the engineering characteristics of pervious concrete made from recycled aggregate (RA) at various aggregate-to-cement ratios (A/C) and the addition of 5% (by weight of total aggregate) of both natural and recycled fine aggregate to produce a very sustainable concrete product for a variety of applications. The three distinct aggregate-to-cement ratios, 6, 5, and 4, were used to produce pervious concrete using recycled aggregate in the research approach. The ratio of water to cement (w/c) was maintained at 0.3. Pervious concrete was created using single-sized recycled aggregate that passed through a 12.5 mm sieve and was held on a 9.5 mm sieve, as well as natural and recycled sand that passed through a 4 mm sieve. The production of twelve distinct concrete mixtures resulted in the testing of each concrete sample for dry density, abrasion resistance, compressive and splitting tensile strengths, porosity, and water permeability. A statistical method called GLM-ANOVA was also used to assess the characteristics of pervious concrete made using recycled aggregate. According to the experimental results, lowering the aggregate-to-cement ratio enhances the pervious concrete's overall performance. Additionally, a modest amount of fine aggregate boosts mechanical strength while lowering void content and water permeability. However, it was noted that such concretes' mechanical qualities were adversely affected to some extent. The results of this study offer insight into the viability of using recycled aggregates in order to achieve both structural integrity and environmental friendliness, which helps to optimize pervious concrete compositions.

Changes in Soil Physical Properties in Various Sizes of Container as Influenced by Packing Amount of Coir Dust Containing Root Media (다양한 규격의 포트에서 코이어더스트를 포함한 혼합상토의 충전밀도 차이에 의해 유발된 물리성 변화)

  • Park, Eun Young;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.720-725
    • /
    • 2013
  • When highly shrinkable materials such as coir dust are major component of root media, the degrees of compaction during container filling of root media severely influences the physical properties of root media. It results in the changes in total porosity (TP), container capacity (CC) and air-filled porosity (AFP). This research was conducted to secure the fundamental information in changes of soil physical properties as influenced by the compaction of root media during container filling. To achieve this, three root media were formulated by blending coir dust (CD) with expanded rice hull (CD + ERH, 8:2, v/v), carbonized rice hull (CD + CRH, 6:4) and ground and raw pine bark (CD + GRPB, 8:2). Based on the optimum bulk density, the amount of root media filled into 6.0, 7.5, 8.5, 10.5 and 12.5 cm were adjusted to 90, 100, 110, 120 and 130% based on the weight of root media. Then the changes in TP, CC, and AFP were measured. Elevation of the packing amount of root media in all sizes of pot resulted in the decrease of TP. But the decrease was more severe in CD + ERH and CD + CRH than those in CD + GRPB. The CC also decreased gradually as the packing amounts were elevated in three root media, but the decreases were severe as the container sizes became larger. The AFP decreased drastically by the elevation of the packing amount of root media in all sizes of pot. The AFP was the highest in CD + CRH medium when pot sizes were smaller than 7 cm, but that was the highest in CD + ERH when the pot sizes were larger than 8.5 cm among the 3 root media tested. In this research, the elevation of packing amount of three root media influenced more severely the AFP rather than CC. This result indicates that the packing amount should be controlled to maintain appropriate level of AFP because AFP rather than CC influence severely crop growth. The results obtained through this study can be used to predict the changes in physical properties of root media as influenced by packing amount in various sizes of pots.

Changes in Soil Physical Properties of Peatmoss Containing Root Media as Influenced by Container Size and Packing Density (용기 크기와 충전밀도 차이에 따른 피트모스 혼합상토의 물리성 변화)

  • Park, Eun Young;Choi, Jong Myung;Lee, Dong Hoon
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.558-564
    • /
    • 2013
  • The objective of this research was to secure the fundamental information in changes of soil physical properties as influenced by the compaction of root media during container filling. Three root media were formulated by blending peatmoss (PM) with expanded rice hull (PM + ERH, 8:2, v/v), carbonized rice hull (PM + CRH, 6:4) and ground and aged pine bark (PM + GAPB, 8:2). Based on the optimum bulk density, the amount of root media filled into 6.0, 7.5, 8.5, 10.5 and 12.5 cm were adjusted to 90, 100, 110, 120, and 130%, then the changes in total porosity (TP), container capacity (CC), and air-filled porosity (AFP) were measured. The TP decreased significantly as the packing amount of three root media were elevated in all sizes of container. The TP did not show significant differences among the root media in small sizes of containers, but showed significant differences when sizes of containers became larger. As packing amount of three root media were elevated, the CCs in all sizes of containers were decreased. The PM + CRH had the lowest CC among three root media in containers smaller than 8.5 cm, but had the highest CC in those larger than 10.5 cm. These results indicated that the decreases in CC were influenced by the sizes of containers as well as kinds of root media. The elevation of packing amount in three root media diminished significantly the AFP. The AFP in PM + GAPB medium was two times as high as those of PM + ERH or PM + CRH when equal packing densities were applied in all sizes of containers. As the container sizes became larger in three root media, the extents in decreasing of CC were distinct than those of AFP. Above results indicate that elevation in packing amount of three root media decreased significantly the TP, CC and AFP, but these were influenced differently by sizes of containers and kinds of root media. The results would be useful for expectation in the changes of physical properties in various sizes of containers filled with peatmoss based root media.

Growth Characteristics of Strawberry Runner Plants according to Mixing Ratio of Reused Rockwool, Decomposed Granite, and Horticultural Media (재사용 암면, 마사토 및 원예용 상토의 혼합비율에 따른 딸기 자묘의 생육 특성)

  • Jeong, Ji-Hee;Bae, Hyo Jun;Ko, Baul;Ku, Yang Gyu;Kim, Ho Cheol;Bae, Jong Hyang
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • This study was conducted to investigate the horticultural media + decomposed granite + reused rock wool in the following mixing ratio: Control = 100:0, M1 = 80:0:20, M2 = 60:30:10, M3 = 40:30:30, M4 = 30:40:30, M5 = 0:50:50 (reused rockwool : decomposed granite : horticultural media) and develop the physicochemical properties and the growth of 'Sulhyang' strawberry runner plant. In the physical aspect of the horticultural media, statistical differences were recognized that the bulk density and particle density were lower in the control and M1. But the bulk density and particle density were high in the M3, M4, and M5, because it had high mixing ratio between recycled rock wool and decomposed granite. EAW and WBC showed a similar tendency. The air porosity and total porosity were higher in control and M1 than M3, M4, M5. Exchangeable cation (K+, Ca2+, Na+, Mg2+) and base replacement capacity (CEC) were higher in control and M1, than M2, M3, M4, and M5. As a result of the cultivation of 'Sulhyang' runner plant, the plant length was long in M2, 32.1 cm and smaller than M5 to 28.4 cm. However, if the crown diameter, which is the growth indicator of the runner plant, all 6 treatments were formed 11.23 mm-12.03 mm, which is considered to be suitable for the growth of the runner plant. There wasn't a statistical difference between the weight and dry weight of the root. As a result, the growth difference of the seedlings by the horticulture media was similar. Therefore, considering the physical properties of the horticultural media, it was judged that the air porosity and total porosity would be improved when the recycled rock wool and the decomposed granite were properly mixed rather than the use of the horticultural media as a single medium, which would be advantageous for irrigation management.