• Title/Summary/Keyword: Total phosphate(TP)

Search Result 37, Processing Time 0.03 seconds

A Study on the Reduction of Total Phosphate of the Concerned Pollution Area in the Main Stream of Mangyeong River (만경강 본류 중 오염우심지역의 TP 저감방안 연구)

  • Jounghwa, Choi;Jaeog, Kwon;Miseon, Lee;Wook, Jang;Geunhwa, Choi;Eunhye, Ko;Seohyeon, Sim;Changwoo, Cho
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.316-326
    • /
    • 2022
  • This study aimed to investigate the causes of the increasing Total Phosphate(TP) in the mainstream of Mangyeong river over the past 10 years, and suggested a reduction plan of about 3 points. First, the high TP concentration was continuously released in the discharge outlet of the Haepo bridge stormwater pipeline. The average TP concentration was 5.066 mg/L and values as high as 29.470 mg/L were measured. The highest pollution contribution rate to the Mangyeong river was more than 70 %. The cause of the pollution was expected to take place somewhere in Wanju Industrial Complex. Second, the average TP concentration of wastewater-treated effluent in the H factory was 0.405 mg/L. If a TP reduction facility is additionally installed in the H factory, it will help reduce TP uptake by Lake Saemangeum. Third, the TP concentration of untreated non-point source point flowing into the Samrae stream was very high with an average of 2.828 mg/L. Also, the pollution contribution rate of Samraecheon 2 to Mangyeong river was 21.8 % on average and up to 58 %. The pollution contribution rate was also high during the agricultural season and the winter, during which the flow rate is decreased. Investigation of these three points may be continuously needed, and analysis results and policy proposals presented to Jeollabukdo and Wanjugun to manage pollution sources.

Characteristics of TN and TP in Runoff from Reclaimed Paddy Field of Fine Sandy Loam

  • Lee, Kyung-Do;Hong, Suk-Young;Kim, Yi-Hyun;Na, Sang-Il;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.417-425
    • /
    • 2013
  • This study investigated the runoff from rice paddy located on reclaimed fine sandy loam soil to provide data for the development of policies to protect water quality of estuaries. Total N (TN), Total P (TP) concentrations and runoff loads at outlet were monitored from 2006 to 2008. Soil phosphate adsorptivity was measured and compared with typical paddy soil in watersheds. TP concentration of the paddy water and TP runoff loads were much greater than those of typical paddy field in watershed because phosphate adsoptivity in reclaimed paddy field of fine sandy loam appeared to be a third of those of typical paddy soils by relatively low soil OM and high sand content of the reclaimed soil. Thus, nutrient runoff, particularly phosphate from the reclaimed paddy field needs to be managed more thoroughly to protect estuarine water quality.

Influence of Compost Recycling and Magnesium Supplement on Physical and Chemical Traits of Animal Manure Compost

  • Lee, Jin-Eui;Kwag, Jung-Hoon;Ra, Chang-Six
    • Journal of Animal Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.513-519
    • /
    • 2010
  • A series of experiments were performed to study the influence of the following parameters on the physical traits and composition of swine manure compost: (1) addition of magnesium (Mg) at a molar ratio of 1.2 with respect to $PO_4$, and (2) reutilization of compost containing $MgNH_4PO_4{\cdot}6H_2O$ (magnesium ammonium phosphate, MAP). Three independent batch tests were conducted for replication: batch test I-control (C) and Mg added (T), batch test II-C, T and compost recycle ($T_{R1}$), and batch test III-C, T and compost recycle ($T_{R2}$). Magnesium addition and compost reutilization had no adverse effect on the degradation of organic matter. Reuse of the compost, however, had a clear effect on the total nitrogen (TN) and total phosphorus (TP) contents in the final compost. Repeated compost reutilization as a bulking material was resulted in composts rich in N and P. Upon adding the Mg supplement to the composting materials, the ortho-phosphate (OP) to TP ratio decreased due to the MAP crystallization reaction. The decrease in the OP/TP ratio and the increase in the TP content of the compost indicate that water-soluble phosphate is converted into a slow-release phosphate by the formation of crystals during composting. X-ray diffraction analysis of the irregular shaped crystals in the compost indicated that they are MAP crystals and that the crystallization of MAP begins immediately after the addition of the Mg supplement. The Mg addition to composting materials and the reutilization of compost as a bulking material would be a practical means to conserve nutrient content.

Effect of different concentrations and ratios of ammonium, nitrate, and phosphate on growth of the blue-green alga (cyanobacterium) Microcystis aeruginosa isolated from the Nakdong River, Korea

  • Kim, Hocheol;Jo, Bok Yeon;Kim, Han Soon
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.275-284
    • /
    • 2017
  • Microcystis aeruginosa causes harmful algal blooms in the Nakdong River of Korea. We studied the effect of different concentrations and ratios of ammonium ($NH_4{^+}$), nitrate ($NO_3{^-}$), and phosphate ($PO{_4}^{3-}$) on growth of this species in BG-11 medium: each nutrient alone, $NO_3{^-}:NH_4{^+}$ ratio, the N : P ratio with fixed total N (TN), and the N : P ratio with fixed total P (TP). The single nutrient experiments indicated that M. aeruginosa had the highest growth rate at $NH_4{^+}$ and $NO_3{^-}$ concentrations of $500{\mu}M$, and at a $PO{_4}^{3-}$ concentration of $5{\mu}M$. The $NO_3{^-}:NH_4{^+}$ ratio experiments showed that M. aeruginosa had the highest growth rate at a ratio of 1 : 1 when TN was $100{\mu}M$ and $250{\mu}M$, and the lowest growth rate at a ratio of 1 : 1 when the TN was $500{\mu}M$. The N : P ratio with fixed TN experiments indicated that M. aeruginosa had the highest growth rates at 50 : 1, 20 : 1, and 100 : 1 ratios when the TN was 100, 250, and $500{\mu}M$, respectively. In contrast, the N : P ratio with fixed TP experiments showed that M. aeruginosa had the highest growth rates at 200 : 1 ratio at all tested TP concentrations. In conclusion, our results imply that the $NO_3{^-}:NH_4{^+}$ ratio and the $PO{_4}^{3-}$ concentration affect the early stage of growth of M. aeruginosa. In particular, our results suggest that the maximum growth of M. aeruginosa is not simply affected by the $NO_3{^-}:NH_4{^+}$ ratio and the N : P ratio, but is determined by the TN concentration if a certain minimum $PO{_4}^{3-}$ concentration is present.

Nutrient Behavior in an Upland Field of Cabbage Adjacent to the River (하천변 양배추 밭에서의 영양물질의 거동)

  • Song, Chul-Min;Kim, Jin-Soo;Jang, Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.65-71
    • /
    • 2010
  • This study was conducted to investigate the dynamics of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in outflow from a cabbage farmland in a mixed land-use watershed. The TN concentrations in groundwater showed twice peaks in late July 2006 and late March 2007 (3.8, 4.7 mg/L, respectively), when it rained shortly after fertilizer application, indicating that nitrogen leaching is greatly influenced by fertilization and rainfall. The mean concentrations of TN and $NO_3$-N in surface water were not significantly higher than those in groundwater, while the mean concentrations of TP and $PO_4$-P in surface water were significantly (p < 0.05) were higher than those in groundwater. The TN concentrations in groundwater were generally higher than those in surface water during fertilization and early growing season due to the effect of fertilization, but vice versa in the other periods. In contrast, the TP concentrations in groundwater were always lower than those in surface water due to the sorption of particulate phosphorous by soil. The ratio of TN load in baseflow to that in total TN load (39 %) was much greater than the TP ratio (7 %), suggesting that baseflow contribute to nitrogen export. Therefore, proper fertilization management should be taken to reduce nitrogen load through baseflow.

Major Watershed Characteristics Influencing Spatial Variability of Stream TP Concentration in the Nakdong River Basin (낙동강 유역에서 하천 TP 농도의 공간적 변동성에 영향을 미치는 주요 유역특성)

  • Seo, Jiyu;Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.204-216
    • /
    • 2021
  • It is important to understand the factors influencing the temporal and spatial variability of water quality in order to establish an effective customized management strategy for contaminated aquatic ecosystems. In this study, the spatial diversity of the 5-year (2015 - 2019) average total phosphorus (TP) concentration observed in 40 Total Maximum Daily Loads unit-basins in the Nakdong River watershed was analyzed using 50 predictive variables of watershed characteristics, climate characteristics, land use characteristics, and soil characteristics. Cross-correlation analysis, a two-stage exhaustive search approach, and Bayesian inference were applied to identify predictors that best matched the time-averaged TP. The predictors that were finally identified included watershed altitude, precipitation in fall, precipitation in winter, residential area, public facilities area, paddy field, soil available phosphate, soil magnesium, soil available silicic acid, and soil potassium. Among them, it was found that the most influential factors for the spatial difference of TP were watershed altitude in watershed characteristics, public facilities area in land use characteristics, and soil available silicic acid in soil characteristics. This means that artificial factors have a great influence on the spatial variability of TP. It is expected that the proposed statistical modeling approach can be applied to the identification of major factors affecting the spatial variability of the temporal average state of various water quality parameters.

The Analysis of Water Quality and Suspended Solids Effects against Transparency of Major Artificial Reservoirs in Korea. (우리나라 주요 인공호의 투명도에 대한 수질 및 수중 부유물 영향 분석)

  • Kong, Keon-Hwa;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.221-231
    • /
    • 2009
  • This study was carried out to comparatively identify characteristics of turbid water influence in Imha Reservoir, Soyang Reservoir, and Daecheong Reservoir in Korea. We used 3 years dataset from 2002 to 2004 and analyzed seasonal water quality characteristics, particular parameters in association with turbidity, and light transparency to figure out the trends. All parameters to be used in the study were total phosphate (TP), total nitrogen (TN), chlorophyll-${\alpha}$ (Chl), suspended solids (SS), Secchi depth (SD), conductivity, and verticallight extinction coefficienct($K_d$), euphotic zone ($Z_{eu}$), and critical depth ($Z_p$). All parameters depend on season and watershed. Suspended solids from Soyang Reservoir were usually caused by TP, mainly related to living wastes and agricultures in upper stream. Daecheong Reservoir was influenced by organic matters related to large phytoplankton biomass in summer and inorganic suspended solids by nutrients in the winter. However, in case of Imha Reservoir, turbid water, consisted in silt and clay through heavy precipitation remained in the waterbody to decrease water transparency along with TP and caused the light limitation in winter. Overall results suggest that it was necessary to establish various management programs because the reasons occurring turbidity were varied according to the reservoir circumstances.

Application of Adsorption Characteristic of Ferrous Iron Waste to Phosphate Removal from Municipal Wastewater (폐산화철의 흡착특성을 이용한 도시하수내 인 처리)

  • Kim, Jin-Hyung;Lim, Chae-Sung;Kim, Keum-Yong;Kim, Dae-Keun;Lee, Sang-Ill;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • This study proposed the method of phosphate recovery from municipal wastewater by using ferrous iron waste, generated from the mechanical process in the steel industry. In the analysis of XRD, ferrous iron waste was composed of $Fe_3O_4$ (magnetite), practically with $Fe^{2+}$ and $Fe^{3+}$. It had inverse spinel structure. In order to identify the adsorption characteristic of phosphate on ferrous iron waste, isotherm adsorption test was designed. Experimental results were well analyzed by Freundlich and Langmuir isotherm theories. Empirical constants of all isotherms applied increased with alkalinity in the samples, ranging from 1.2 to 235 $CaCO_3/L$. In the regeneration test, empirical constants of Langmuir isotherm, i.e., $q_{max}$ (maximum adsorption capacity) and b (energy of adsorption) decreased as the frequency of regeneration was increased. Experiment was further performed to evaluate the performance of the treatment scheme of chemical precipitation by ferrous iron waste followed by biological aerated filter (BAF). The overall removal efficiency in the system increased up to 80% and 90% for total phosphate (TP) and soluble phosphate (SP), respectively, and the corresponding effluent concentrations were detected below 2 mg/L and 1 mg/L for TP and SP, respectively. However, short-circuit problem was still unsolved operational consideration in this system. The practical concept applied in this study will give potential benefits in achieving environmentally sound wastewater treatment as well as environmentally compatible waste disposal in terms of closed substance cycle waste management.

Variation of Phosphorus Concentration and Redox Potential in a Paddy Field Plot During Growing Season (영농기 필지논에서의 인 (P) 농도와 산화환원전위 (Eh)의 변화 특성)

  • Kim, Young-Hyeon;Kim, Jin-Soo;Jang, Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.47-52
    • /
    • 2010
  • The purpose of this study is to investigate characteristics of total phosphorus (TP) and phosphate phosphorous ($PO_4$-P) concentrations in ponded water and redox potential (Eh) in paddy soil during the growing season. The TP and $PO_4$-P concentrations showed twice peak values after basal dressing and tillering fertilization. The ratio of $PO_4$-P to TP showed low values (0.07~0.18), indicating that most of phosphorus is particlulate. The $PO_4$-P concentrations significantly decreased with dissolved oxygen (DO) concentrations. The Eh showed high values (179~636 mV) under non-ponded aerobic condition, but low values (74~112 mV) under ponded anaerobic condition The TP and $PO_4$-P concentrations in ponded water increased shortly after tillering fertilization even if phosphorus was not applied. This may be due to the release of dissolved phosphorus from the bottom sediment and its associated algal and water flea blooms under anaerobic condition. Therefore, proper water management should be needed shortly after tillering fertilization.

Nutrient Balance in the Paddy Fields Watershed with a Source of River Water (하천관개지역 광역논에서의 영양물질의 물질수지)

  • Lee, Jeong Beom;Lee, Jae Yong;Li, Si Hong;Jang, Jeong Ryeol;Jang, Ik Geun;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.11-19
    • /
    • 2014
  • The objective of this research was to investigate concentration and load of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in a 23.4-ha paddy fields watershed with river water source. Water samples for irrigation water, drainage water, ponded water and groundwater were collected, and irrigation and drainage water were measured at 5~10 day intervals during normal days and at 2~6 hours intervals during three storm events. The amount of irrigation water in the study area was over 2,000 mm, which is almost identical to that in the area irrigated from a large reservoir but much more than that in the area irrigated from a pumping station. Mean flow-weighted concentrations of TN and TP in irrigation water were 2.8 and 0.15 mg/L, respectively, higher than those in the area irrigated from a large reservoir or a pumping station. The ratios of irrigation load to total inflow load for TN and TP were 88 %, and the ratios of surface outflow load to total outflow load for TN and TP were over 90 %, indicating that total nutrient load may be greatly affected by water management. The nutrient loads per area in the study area were estimated as TN 21.1 kg/ha and TP 1.1 kg/ha. Especially, the TP load per area in the study area was smaller than that in the area irrigated from a large reservoir or a pumping station. This may be because outflow load is not high likely due to sedimentation of particulate P and irrigation water load is high due to high TP concentration in irrigation water and high amount of irrigation water.