• Title/Summary/Keyword: Total oxidation of methane

Search Result 26, Processing Time 0.024 seconds

Microbial Community Composition Associated with Anaerobic Oxidation of Methane in Gas Hydrate-Bearing Sediments in the Ulleung Basin, East Sea (동해 울릉분지 가스 하이드레이트 매장 지역의 메탄산화 미생물 군집 조성 및 분포)

  • Cho, Hyeyoun;Kim, Sung-Han;Shin, Kyung-Hoon;Bahk, Jang-Jun;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • To elucidate the microbial consortia responsible for the anaerobic methane oxidation in the methane hydrate bearing sediments, we compared the geochemical constituents of the sediment, the rate of sulfate reduction, and microbial biomass and diversity using an analysis of functional genes associated with the anaerobic methane oxidation and sulfate reduction between chimney site (UBGH2-3) on the continental slope and non-chimney site (UBGH2-10) on the basin of the Ulleung Basin. From the vertical profiles of geochemical constituents, sulfate and methane transition zone (SMTZ) was clearly defined between 0.5 and 1.5 mbsf (meters below seafloor) in the UBGH2-3, and between 6 and 7 mbsf at the UBGH2-10. At the UBGH2-3, the sulfate reduction rate (SRR) in the SMTZ exhibited was appeared to be $1.82nmol\;cm^{-3}d^{-1}$ at the depth of 1.15 mbsf. The SRR in the UBHG2-10 showed a highest value ($4.29nmol\;cm^{-3}d^{-1}$) at the SMTZ. The 16S rRNA gene copy numbers of total Prokaryotes, mcrA, (methyl coenzyme M reductase subunit A), and dsrA (dissimilatory sulfite reductase subunit A) showed the peaks in the SMTZ at both sites, but the maximum mcrA gene copy number of the UBGH2-10 appeared below the SMTZ (9.8 mbsf). ANME-1 was a predominant ANME (Anaerobic MEthanotroph) group in both SMTZs of the UBGH2-3 and -10. However, The sequences of ANME-2 were detected only at 2.2 mbsf of the UBGH2-3 where high methane flux was observed because of massive amount of gas hydrate at shallow depth. And Desulfosarcina-Desulfococcus (DSS) that is associated with ANME-2 was detected in 2.2 mbsf of the UBHG2-3. Overall results demonstrate that ANME-1 and ANME-2 are considered as significant archaeal groups related to methane cycle in the subsurface sediment of the East Sea, and ANME-2/DSS consortia might be more responsible for methane oxidation in the methane seeping region than in non-seeping region.

Effect of Temperature and Reactants Flow Rate on the Synthesis Gas Production in a Fixed Bed Reactor (유동층 반응기에서 합성가스 생성에 미치는 반응온도와 반응물 유속의 영향)

  • Kim, Sang-Bum;Kim, Young-Kook;Hwang, Jae-Young;Kim, Myung-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.225-230
    • /
    • 2004
  • Synthesis gas is a high valued compound as a basic chemicals at various chemical processes. Synthesis gas is mainly produced commercially by a steam reforming process. However, the process is highly endothermic so that the process is very energy-consuming process. Thus, this study was carried out to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst in a fluidized bed reactor. With the fluidized bed reactor, $CH_4$ conversion was 91%, and Hz and CO selectivities were both 98% at 850$^{\circ}C$ and total flow rate of 100 mL/min. These values were higher than those of fixed bed reactor. From this result, we found that with the use of the fluidized bed reactor it was possible to avoid the disadvantage of fixed bed reactor (explosion) and increase the productivity of synthesis gas.

Effect of Temperature and Reactants Flow Rate on the Synthesis Gas Production in a Fixed Bed Reactor (고정층 반응기에서 합성가스 생성에 미치는 반응온도와 반응물 유속의 영향)

  • Kim, Sang-Bum;Kim, Young-Kook;Hwang, Jae-Young;Kim, Myung-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2004
  • The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst. Reaction temperatures were changed from 600 to $850^{\circ}C$, and reactants flow rates were changed from 100 to 200 mL/mim. There were no significant changes in the methane conversion observed in the range of temperatures used. It is possibly stemmed from the nearly total exhaustion of oxygen introduced. The selectiveties of hydrogen and carbon monoxide did not largely depend on the reaction temperature. The selectivities of hydrogen and carbon monoxide were 96 and 90%, respectively. Carbon deposition observed was the smallest at $750^{\circ}C$ and the largest at $850^{\circ}C$. It is found that the proper reaction temperature is $750^{\circ}C$. The best reactant flow rate was 150 ml/min.

Preparation of the Hollow Fiber Type Perovskite Catalyst for Methane Complete Oxidation (메탄의 완전산화 반응을 위한 중공사형 페롭스카이트 촉매 제조)

  • Lee, Seong Woon;Kim, Eun Ju;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.297-302
    • /
    • 2018
  • Bead type and hollow fiber type catalyst (HFC, Hollow Fiber type Catalyst) was prepared by $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF1928) perovskite powder catalyst which showed excellent methane complete oxidation characteristics through previous studies. The HFC have a cylindrical shape with an empty interior, and pores can be formed through Phase inversion method so the specific surface area can be remarkably improved. In the case of the bead type catalyst prepared by adding Methyl Cellulose (MC), $SrCO_3$ was produced in addition to the original catalyst composition of LSCF1928 due to the reaction of $CO_2$ emitted from MC and Sr of the catalyst. In the case of the HFC, a single phase perovskite structure was obtained without impurities. The HFC calcined at $700{\sim}900^{\circ}C$ showed pore structure of finger-sponge-finger structure, and 99.9% oxygen conversion rate was achieved through complete oxidation of methane at $475^{\circ}C$. Air gap and spinning pressure condition were changed to control the HFC pore. 2 cm air gap and 7 bar spinning pressure showed the best catalytic performance and achieved oxygen conversion rates of more than 70.65%, 93.01%, and 99.99% at $425^{\circ}C$, $450^{\circ}C$ and $475^{\circ}C$, respectively.

Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion (플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산)

  • Song, Hee Gaen;Chun, Young Nam
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The use of fossil fuel and biogas production causes air pollution and climate change problems. Research endeavors continue to focus on converting methane and carbon dioxide, which are the major causes of climate change, into quality energy sources. In this study, a novel plasma-carbon converter was proposed to convert biogas into high quality gas, which is linked to photovoltaic and wind power and which poses a problem on generating electric power continuously. The characteristics of conversion and gas production were investigated to find a possibility for biogas conversion, involving parametric tests according to the change in the main influence variables, such as O2/C ratio, total gas feed rate, and CO2/CH4 ratio. A higher O2/C ratio gave higher conversions of methane and carbon dioxide. Total gas feed rate showed maximum conversion at a certain specified value. When CO2/CH4 feed ratio was decreased, both conversions increased. As a result, the production of solar fuel by plasma oxidation destruction-carbon material gasification conversion, which was newly suggested in this study, could be known as a possibly useful technology. When O2/C ratio was 0.8 and CO2/CH4 was 0.67 while the total gas supply was at 40 L min-1 (VHSV = 1.37), the maximum conversions of carbon dioxide and methane were achieved. The results gave the highest production for hydrogen and carbon dioxide which were high-quality fuel.

Heterogeneous Catalysts Fabricated by Atomic Layer Deposition

  • Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.128-128
    • /
    • 2013
  • Fabrication of heterogeneous catalysts using Atomic Layer Deposition (ALD) has recently been attracting attention of surface chemists and physicists. In this talk, I will present recent results about structures and chemical activities of various catalysts prepared by ALD, particularly focusing on Ni-based catalysts. Ni has been considered as potential catalysts for $CO_2$ reforming of methane (CRM); however, Ni often undergoes rapid decrease in catalytic activity with time, and therefore, application of Ni as catalysts for CRM has been regarded as difficult so far. Deactivation of Ni catalysts during CRM reaction is from either coke formation on Ni surface or sintering of Ni particles during reaction. Two different strategies have been used for enhancing stability of Ni-based catalysts; $TiO_2$ nanoparticles were deposited on micrometer-size Ni particles by ALD, which turned out to reduce coke formation on Ni surfaces. Ni nanoparticles deposited by ALD on mesoporous silica showed high activity and long-term stability from CRM without coke deposition and sintering during CRM reaction. Ni-based catalysts have been also used for oxidation of toluene, which is one of the most notorious gases responsible for sick-building syndrome. It was shown that onset-temperature of Ni catalysts for toluene oxidation is as low as $120^{\circ}C$. At $250\circ}C$, total oxidation of toluene to $CO_2$ with a 100% conversion was found.

  • PDF

Characteristic of Partial Oxidation of Methane and Ni Catalyst Reforming using GlidArc Plasma (GlidArc 플라즈마를 이용한 메탄 부분산화 및 Ni 촉매 개질 특성)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1268-1272
    • /
    • 2008
  • Low temperature plasma applied with partial oxidation is a technique to produce synthesis gas from methane. Low temperature plasma reformer has superior miniaturization and start-up characteristics to reformers using steam reforming or CO$_2$ reforming. In this research, a low temperature plasma reformer using GlidArc discharge was proposed. Reforming characteristics for each of the following variables were studied: gas components ratio (O$_2$/CH$_4$), the amount of steam, comparison of reaction on nickle and iron catalysts and the amount of CO$_2$. The optimum conditions for hydrogen production from methane was found. The maximum Hydrogen concentration of 41.1% was obtained under the following in this condition: O$_2$/C ratio of 0.64, total gas flow of 14.2 L/min, catalyst reactor temperature of 672$^{\circ}C$, the amount of steam was 0.8, reformer energy density of 1.1 kJ/L with Ni catalyst in the catalyst reactor. At this point, the methane conversion rate, hydrogen selectivity and reformer thermal efficiency were 66%, 93% and 35.2%, respectively.

Partial Oxidation Reformer in a Plasma-Recuperative Burner (플라즈마-축열버너 부분산화 개질장치)

  • AN, JUNE;CHUN, YOUNG NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.68-76
    • /
    • 2021
  • Climate change problems occur during the use of fossil fuel and the process of biogas production. Research continues to convert carbon dioxide and methane, the major causes of climate change, into high-quality energy sources. in order to present the performance potential for the novel plasma-recuperative burner reformer, the reforming characteristics for each variable were indentified. The optimal operating condition of was an O2/C ratio of 1.0 and a total gas supply of 20 L/min. At this time, CH4 conversion was 64%, H2 selectivity was 39%, and H2/CO ratio was 1.13, which were the results applicable to the solid oxide fuel cell fuel stack for RPG, or Residential Power Generator. Recirculation of reformed gas increases the amount of H2 and CO, which are combustible gases, especially the amount of H2. As a result, the H2 selectivity is improved, and high-quality gas can be produced.

Treatment of Wastewater from Purified Terephtalic Acid (PTA) Production in a Two-stage Anaerobic Expanded Granular Sludge Bed System

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.355-361
    • /
    • 2014
  • The wastewater treatment with a two-phase expanded granular sludge bed (EGSB) system for anaerobic degradation of acetate, benzoate, terephtalate and p-toluate from purified terephtalic acid (PTA) production was studied. The feasibility and effectiveness of the system was evaluated in terms of organic oxidation by chemical oxygen demand (COD), gas production, bacterial adaptability and stability in the granular sludge. Average removal efficiencies 93.5% and 72.7% were achieved in the EGSB reactors under volumetric loading rates of $1.0-15kg-COD/m^3/day$ and terephtalate and p-toluate of 351-526 mg/L, respectively. Gas production reached total methane production rate of 0.30 L/g-COD under these conditions in the sequential EGSB reactor system. Higher strength influent COD concentration above 4.8 g-COD/L related to field conditions was fed to observe the disturbance of the EGSB reactors.

Spatial Patterns of Methane Oxidation and Methanotrophic Diversity in Landfill Cover Soils of Southern China

  • Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.423-430
    • /
    • 2015
  • Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.