• Title/Summary/Keyword: Total friction factor

Search Result 55, Processing Time 0.033 seconds

Study on Optimum Design for Embankment Construction on Soft Ground Treated by SCP (SCP개량지반상에 성토시공 시 최적설계에 관한 연구)

  • Chae, Jong-gil;Park, Yeong-Mog;Jung, MinSu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.251-258
    • /
    • 2009
  • In this study, the optimum design conditions for embankment construction on soft clay layer improved by soil compaction pile (SCP) are discussed by comparing the practical design method to the reliability design which is based on the loss function and advanced first order second moment (AFOSM) method. The results are summarized as follows; 1) the relationship between safety factor and failure probability becomes heavy exponentially, failure probability decreases rapidly till 1% approximately until safety factor is smaller than 1.2 and after then, failure probability decrease gradually along the increase of the safety factor. The design safety factor of 1.2 may be the critical value that has been established on considering both relationships appropriately, 2) the safety factor of 1.15 at the minimum expected total cost is a little smaller than the design safety factor of 1.2 and the failure probability is about 1%, 3) the sensitivities of the ratio of stress share and the internal friction angle of sand is larger than the variables related the undrained shear strength of soft layer. This result means that the distribution characteristic of n and ${\phi}$ influences on the stability analysis considerably and they should be considered necessarily on stability analysis of embankment on soft layer improved by SCP, 4) new failure points of the input variables at the design safety factor of 1.2(below failure probability of 0.1~0.3%) is far 1~2 times of standard deviation from the initial design values of themselves.

Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea (한반도 참나무 꽃가루 확산예측모델 개발)

  • Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Kim, Mijin;Choi, Ho-seong;Han, Mae Ja;Oh, Inbo;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.221-233
    • /
    • 2015
  • Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.

Effect of Rib Angle on Thermal Performance in a Two Wall Convergent/Divergent Channel with Ribs on One Wall (양측면 수축/확대 사각채널에서 한면에 설치된 리브의 각도가 열성능에 미치는 효과)

  • Ahn, Soo Whan;Lee, Myung Sung;Bae, Sung Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.195-200
    • /
    • 2015
  • The thermal performance in the channels with two-wall rectangular convergent/divergent cross-sectional areas along the axial distance was investigated experimentally. The ribbed rectangular convergent/divergent channels were manufactured with a fixed rib height (e) = 10 mm and the ratio of rib spacing (p) to height (e) = 10. Three different parallel angled ribs (a = $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$) were each placed on the channel's one sided wall only. The convergent channel of $D_{ho}/D_{hi}=0.67$ and the divergent channel of $D_{ho}/D_{hi}=1.49$ were considered. The ribbed divergent channel produced better thermal performance than the ribbed convergent channel in three different restrictions; identical flow rate, identical pumping power, and identical pressure loss.

Effects of Rib Angles on Heat Transfer in a Divergent Square Channel With Ribs on One Wall (한 면에 리브가 설치된 확대 정사각 채널에서 리브 각이 열전달에 미치는 효과)

  • Lee, Myung Sung;Ahn, Soo Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.609-613
    • /
    • 2015
  • In this study, the experiments are performed to investigate the local heat transfer and pressure drops of developed turbulent flows in the diverging square channels along the axial distance. The square divergent channels are manufactured with a fixed rib height (e) = 10 mm. Four different parallel angled ribs ($a=30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$) are placed on the channel's one-sided wall only. TThe measurement are conducted within the range of Reynolds numbers from 22,000 to 79,000. The results show that a rib angle-of-attack of $45^{\circ}$ produces the best heat-transfer performance.

Pressure Drop Characteristics on HTS Power Cables with LN2 Flow (초전도 케이블 냉각유로에서의 압력강하 특성)

  • Koh Deuk-Yong;Yeom Han-Kil;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • High temperature superconducting (HTS) power cable requires forced sub-cooled LN2 flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65 K and 77 K. The HTS power cable needs sufficient cooling to overcome its low temperature heat load. For successful cooling, the hydraulic characteristics of the HTS power cable must be well investigated to design the cables. Especially, the pressure drop in the cable is an important design parameter, because the pressure drop decides the length of the cable, size of the coolant circulation pump and circulation pressure, etc. This paper describes measurement and investigation of the pressure drop of the cooling system. In order to reduce the total pressure drop of the cooling system, the flow rate of liquid nitrogen must be controlled by rotational speed of the circulation pump.

Effects of Rib Angles on Heat Transfer in a Square Convergent Channel with Ribs on One Wall (한면에 리브가 설치된 4면 수축 사각채널에서 리브의 각도가 열전달에 미치는 영향)

  • Lee, Myung-Sung;Kim, Beom-Soo;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • The local heat transfer and pressure drops of developed turbulent flows in the convergent channels with square cross-sectional areas along the streamwise distance have been investigated experimentally. Four different parallel angled ribs (a = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$) are placed to the one sided wall only, respectively. The ribbed walls are manufactured with a fixed rib height (e)=10 mm and the ratio of rib spacing (p) to height (e) = 10. The measurement was run within the range of Reynolds numbers from 22,000 to 79,000. The result shows that the increases in the Nusselt numbers for the flow attack angles can be seen in the order of $30^{\circ}$, $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$.

An Analytical Study on the Performance Analysis of a Unit-In-jector System of a Diesel Engine

  • Kim, Chul-Ho;Lee, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.146-156
    • /
    • 2003
  • A numerical algorithm is developed to analyze the performance of a Unit-injector (UI) System for a diesel engine. The fundamental theory of the algorithm is based on the continuity equation of fluid dynamics. The loss factors that should be seriously regarded on the continuity equation are the compressibility effect of liquid fuel, the wall friction loss in high-pressure fuel lines of the system, the kinetic energy loss of fuel in the system, and the leakage of fuel out of the control volume. For an evaluation of the developed simulation algorithm, the calculation results are compared with the experimental outputs provided by the Technical Research Center of Doowon Precision Industry Co. (DPICO) ; the maximum pressure in the plunger chamber (P$\_$p/) and total amount of fuel injected into a cylinder per cycle (Q$\_$f/) at each operational condition. The result shows that the average error rate (%) of P$\_$p/ and Q$\_$f/ are 2.90% and 4.87%, respectively, in the specified operational conditions. Hence, it can be concluded that the analytical simulation algorithm developed in this study can be reasonably applied to the performance prediction of newly designed UI system.

Stress Intensity Factors and Possible Crack Propagation Mechanisms for a Crack Surface in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰 접촉하중시 Polyethylene Tibia 표면균열의 응력확대계 수와 복합전파거동에 관한 연구)

  • Kim, Byung-Soo;Moon, Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2019-2027
    • /
    • 2003
  • Pitting wear is a dominant from of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, K$\_$I/and $_{4}$, were calculated for a surface crack in a polyethylene-CoCr-bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive K$\_$I/ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $_{4}$ was the greatest when the load was directly adjacent to the crack (g/a=${\pm}$1). Sliding friction caused a substantial increase of both K$\_$I/$\^$max/ and $_{4}$$\^$max/. The effective Mode I stress intensity factors, K$\_$eff/, were the greatest at g/a=${\pm}$1, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of K$\_$eff/ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

Study for Possible Crack Propagation Mechanisms for a Surface Cracked in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰접촉하중 시 Polyethylene tibia 요소의 표면균열 복합전파 거동에 관한 연구)

  • Kim, B.S.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1222-1227
    • /
    • 2003
  • Pitting wear is a dominant form of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, $K_{I}$ and $K_{II}$, were calculated for a surface crack in a polyethylene - CoCr - bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive $K_{I}$ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $K_{II}$, was the greatest when the load was directly adjacent to the crack $(g/a={\pm}1)$. Sliding friction caused a substantial increase of both $K_{I}^{max}$ and $K_{II}^{max}$. The effective Mode I stress intensity factors, $K_{eff}$, were the greatest at $g/a={\pm}1$, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of $K_{eff}$ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

  • PDF

Analysis of hydraulic system for seawater desalination plant through piping analysis program (배관 해석 프로그램을 통한 해수담수화 플랜트 수압 시스템 분석)

  • Choi, Jihyeok;Choi, Yongjun;Yang, Heungsik;Lee, Sangho;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.221-230
    • /
    • 2020
  • In actual seawater desalination plant, the pressure loss due to frictional force of pipe is about 3~5 bar. Also, the pressure loss at pipe connection about 1~3 bar. Therefore, the total pressure loss in the pipe is expected to be about 4~8 bar, which translates into 0.111 to 0.222 kWh/㎥ of energy when converted into the Specific Energy Consumption(SEC). Reducing energy consumption is the most important factor in ensuring the economics of seawater desalination processes, but pressure loss in piping is often not considered in plant design. It is difficult to prevent pressure loss due to friction inside the pipe, but pressure loss at the pipe connection can be reduced by proper pipe design. In this study, seawater desalination plant piping analysis was performed using a commercial network program. The pressure loss and SEC for each case were calculated and compared by seawater desalination plant size.