• Title/Summary/Keyword: Total bacteria

Search Result 3,169, Processing Time 0.032 seconds

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6 (생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝)

  • Han, Song-Hee;Nam, Hyo-Song;Kang, Beom-Ryong;Kim, Kil-Yong;Koo, Bon-Sung;Cho, Baik-Ho;Kim, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.134-144
    • /
    • 2003
  • A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.

Effects of Supplementation of Multienzymes in Diets Containing Different Energy Levels on Growth Performance, Nutrient Digestibility, Blood Metabolites, Microbiota and Intestinal Morphology of Broilers (에너지 수준이 다른 사료에 복합효소제의 첨가가 육계의 사양성적, 영양소 소화율, 혈액성상, 장내미생물 균총 및 소장 융모에 미치는 영향)

  • Shim, Young Ho;Kim, Jin Soo;Hosseindoust, Abdolreza;Ingale, Santosh Laxman;Choi, Yo Han;Kim, Min Ju;Ohh, Seung Min;Ham, Hyung Bin;Chae, Byung Jo
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.28 no.3
    • /
    • pp.97-107
    • /
    • 2017
  • The present study was conducted to investigate the effects on growth performance, nutrient digestibility, and gut health of broiler chickens when a dietary supplementation of multienzymes was added to diets, containing different energy levels. A total of 480 broiler chickens of similar body weight (Ross 308, 1-day-old) were randomly subjected to four treatments. The dietary treatments included a corn-soybean meal-based diet supplemented with: multienzyme (amylase+protease+ mannanase+xylanase+phytase), 0.05% enzyme, and different energy levels (3010 and 3060 kcal/kg). The experimental diets were fed to the chicks in a mash form for 35 days in two phases (1-21 d, phase I; and 22-35 d, phase II). During the overall period, chicks fed with diets supplemented with multienzymes had a better weight gain (p<0.05) and feed conversion ratio (FCR) than those fed with diets without enzymes. There was no difference in the growth rate and FCR among the chicks fed with diets supplemented with enzymes, even though the dietary energy levels were different. The apparent fecal and ileal digestibility of dry matter, gross, crude protein, calcium, and phosphorus were significantly enhanced (p<0.05). The population of cecal and ileal Lactobacillus spp. was significantly increased (p<0.05), and Clostridium spp. and coliforms were significantly decreased (p<0.05) in diets supplemented with enzymes. Villus height and villus height to crypt depth ratio in the small intestine was also significantly enhanced (p<0.05) in diets supplemented with enzymes. In conclusion, multienzyme supplementation had positive effects on the weight gain of broilers, FCR, digestibility of nutrients, and on the growth of intestinal microbiota.

Antioxidant, Antimicrobial and Cellular Protective Effects of Lycopus lucidus Extract and Fraction (택란 추출물 및 분획물의 항산화, 항균 및 세포 보호 효과)

  • Lee, Jin Kyoung;Park, Young Min;Lee, Sang Lae;Song, Ba Reum;Lee, Yun Ju;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.114-121
    • /
    • 2019
  • In this study, antioxidative, antibacterial and cytoprotective effects of the ethanol extract and ethylacetate fraction of Lycopus lucidus (L. lucidus) were compared and analyzed. Free radical scavenging activities ($FSC_{50}$) of the L. lucidus extract and fraction were found to be 65.1 and $64.9{\mu}g/mL$ respectively. In the $Fe^{3+}-EDTA/H_2O_2$ system, the reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) for the extract and fraction were 6.6 and $6.3{\mu}g/mL$, respectively which showed excellent total antioxidant abilities. The extract showed antibacterial activity against S. aureus, while the fraction showed in all the bacteria except for A. niger. The cytoprotective effect of L. lucidus extract was compared to that of the fraction and the effect against $^1O_2$-induced cellular damage of human erythrocytes (${\tau}_{50}$) was 51.3 and 73.7 min at $50{\mu}g/mL$, respectively. For the cytoprotective effect of keratinocytes damaged by $H_2O_2$ and UVB, the extracts did not show any efficacy but showed efficacy at $1-2{\mu}g/mL$, respectively. The fraction increased the cell viability up to 85.8 and 81.9%, respectively. As a result of intracellular ROS scavenging activity, the scavenging activity was observed at $1-2{\mu}g/mL$ of the fraction. From the results comparing the physiological activities of L. lucidus extract and the fraction, the ethylacetate fraction of L. lucidus has antioxidative effect similar to that of the extract whereas superior antimicrobial and cytoprotective effects than that of the extract. Overall, the ethylacetate fraction of L. lucidus protects cells from an external stress which can be used as a potential cosmetic material.

Microbial Qualities of Parasites and Foodborne Pathogens in Ready to Eat (RTE) Fresh-cut Produces at the On/Offline Markets (즉석섭취 신선편의 절단 과일 및 채소의 원충류 및 병원성 식중독균의 미생물학적 품질 실태 연구)

  • Jeon, Ji Hye;Roh, Jun Hye;Lee, Chae Lim;Kim, Geun Hyang;Lee, Jeong Yeon;Yoon, Ki Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.2
    • /
    • pp.87-96
    • /
    • 2022
  • Recently, the purchase of fresh-cut produce and meal kits has increased. Ready-to-eat (RTE) fresh-cut products have potentially hazard of cross-contamination of various microorganisms in the processes of peeling, slicing, dicing, and shredding. There are frequent cases of protozoa food poisoning, such as Cyclospora and Cryptosporidium, caused by fresh-cut products. The objective of the study is to investigate the microbiological qualities of various types of RTE fresh-cut products in the domestic on/offline markets. RTE fresh-cut fruits cup (n=100), fresh-cut vegetables (n=50), and vegetables in meal kits (Vietnamese spring rolls and white radish rolls kits, n=50) were seasonally analyzed. The contamination levels of hygienic indicator organisms, yeast and mold (YM), and foodborne pathogens (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7) were monitored. Overall, the lowest microbiological qualities of meal kits vegetables were observed, followed by RTE fresh-cut fruits cup and fresh-cut vegetables. Contamination levels of total aerobic bacteria, coliforms, and YM in meal kits vegetables were 5.91, 3.90, and 4.71 logs CFU/g, respectively. From the qualitative analysis, 6 out of 200 RTE fresh-cut products (3%) returned positive result for S. aureus. From the quantitative analysis, the contamination levels of S. aureus in purple cabbage from a meal-kit and fresh-cut pineapple were below the acceptable limit (100 CFU/g). Staphylococcus enterotoxin seg and sei genes were detected in RTE fresh-cut celery and red cabbage from meal-kits, respectively. S. aureus contamination must be carefully controlled during the manufacturing processes of RTE fresh-cut products. Neither Cyclospora cayetanensis nor Cryptosporidium parvum was detected in the samples of RTE fresh-cut products and vegetables from meal-kits from the Korean retail markets.

Biological Toxicity Assessment of Sediment at an Ocean Dumping Site in Korea (폐기물 배출해역 퇴적물의 생물학적 독성평가 연구)

  • Seok, Hyeong Ju;Kim, Young Ryun;Kim, Tae Won;Hwang, Choul-Hee;Son, Min Ho;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The effect of sediments in a waste dumping area on marine organisms was evaluated using sediment toxicity tests with a benthic amphipod (Monocorophium acherusicum) and bioluminescent bacterium (Vibrio fischeri) in accordance with the Korean Standard Method for Marine Wastes (KSMMW). Nine sites in the East Sea-Byeong, East Sea-Jeong, and Yellow Sea-Byeong areas were sampled from 2016 to 2019. The test results showed that the relative average survival rate (benthic amphipods) and relative luminescence inhibition rate (luminescent bacteria) were below 30%, which were judged to be "non-toxic." However, in the t-test, a total of 12 benthic amphipod samples (6, 1, 1, and 4 in 2016, 2017, 2018, and 2019, respectively) were significantly different (p<0.05) from the control samples. To identify the source of toxicity on benthic amphipods, a simple linear regression analysis was performed between the levels of eight heavy metals (Cr, As, Ni, Cd, Cu, Pb, Zn, and Hg) in sediments and the relative average survival rate. The results indicated that Cr had the highest contribution to the toxicity of benthic amphipods (p = 0.000, R2 = 0.355). In addition, Cr was detected at the highest concentration at the DB-85 station and exceeded the Marine Environment Standards every year. Although the sediments were determined as "not toxic" according to the ecotoxicity criteria of the KSMMW, the results of the statistical significance tests and toxicity identification evaluation indicated that the toxic effect was not acceptable. Therefore, revising the criteria for determining the toxic effect by deriving a reference value through quantitative risk assessment using species sensitivity distribution curves is necessary in the future.

Evaluation of Microbial Contamination in the Manufacturing Process of Non-Heated Frozen Rice Cakes (비가열 냉동떡의 제조공정에 대한 미생물 오염도 평가)

  • Yong-Sik, Yoon;Eun-In, Yang;Young-Soo, Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.400-410
    • /
    • 2022
  • This study was performed to analyze the microbial contamination levels of three non-heated rice cake manufacturers in terms of seasonal manufacturing process and to investigate the effects of summertime soaking on contamination levels and temperature-controlled soaking in water on reduction in microbial levels. The total aerobic bacteria (TAB) ranged from 2.69 log CFU/g to 5.08 log CFU/g in the produce, but the microbial contamination increased sharply during soaking. The levels of TAB and coliforms during summer soaking were 7.01 and 3.96 log CFU/g, respectively, and this was significantly higher than those in other seasons. The contamination level was high in the subsequent freezing, with the TAB level (6.24 log CFU/g) exceeding the legal standard. The temperature of soaking water in summer increased from 19.1℃ to 26.8℃ after 12 h of soaking. The microbial contamination was significantly high commensurate with increased soaking time, and the TAB level in the frozen process exceeded the legal standard from 9 h of soaking. The use of ice packs to prevent the increase in temperature of the soaking water in summer resulted in maintenance of temperature at 20.1℃ for up to 12 h. The average TAB value in the freezing process was 4.42 log CFU/g after 12 h of soaking, and this is 1.77 log CFU/g lower than that before. Based on these results, it was determined that controlling the soaking time and water temperature are essential for the production of a safe unheated frozen rice cake. The safety of the HACCP system could be established by applying these preventive management standards.

Effect of Chlorine Dioxide (ClO2) on the Malodor Suppression of Chicken Feces (이산화염소(ClO2) 처리가 계분의 악취 억제에 미치는 영향)

  • Ji Woo, Park;Gyeongjin, Kim;Tabita Dameria, Marbun;Duhak, Yoon;Changsu, Kong;Sang Moo, Lee;Eun Joong, Kim
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.287-298
    • /
    • 2022
  • This study evaluated the efficacy of chlorine dioxide (ClO2) as an oxidant to reduce malodor emission from chicken feces. Two experiments were performed with the following four treatments in parallel: 1) fresh chicken feces with only distilled water added as a control, 2) a commercial germicide as a positive control, and 3) 2,000 or 4) 3,000 ppm of ClO2 supplementation. Aluminum gas bags containing chicken feces sealed with a silicone plug were used in both experiments, and each treatment was tested in triplicate. In Experiment 1, 10 mL of each additive was added on the first day of incubation, and malodor emissions were then assessed after 10 days of incubation. In Experiment 2, 1 mL of each additive was added daily during a 14-day incubation period. At the end of the incubation, gas production, malodor-causing substances (H2S and NH3 gases), dry matter, pH, volatile fatty acids (VFAs), and microbial enumeration were analyzed. Supplementing ClO2 at 2,000 and 3,000 ppm significantly reduced the pH and the ammonia-N, total VFA, H2S, and ammonia gas concentrations in chicken feces compared with the control feces (P<0.05). Additionally, microbial analysis indicated that the number of coliform bacteria was decrease after ClO2 treatment (P<0.05). In conclusion, ClO2 at 2,000 and 3,000 ppm was effective at reducing malodor emission from chicken feces. However, further studies are warranted to examine the effects of ClO2 at various concentrations and the effects on malodor emission from a poultry farm.

Anti-stress and Sleep-enhancing Effects of Ptecticus tenebrifer Water Extract Through the Regulation of Corticosterone and Melatonin Levels (코르티코스테론 및 멜라토닌 수치 조절을 통한 동애등에 물 추출물의 항스트레스 및 수면 개선 효과)

  • Oh, Dool-Ri;Ko, Haeju;Hong, Seong Hyun;Kim, Yujin;Oh, Kyo-Nyeo;Kim, Yonguk;Bae, Donghyuck
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.601-610
    • /
    • 2022
  • P. tenebrifer (PT) belongs to the Diptera order and Stratiomyidae family. Recently, insect industry have been focused as food, animal feed and environmental advantages. γ-aminobutyric acid (GABA) and melatonin have been associated with regulating sleep and depression. GABA is the primary inhibitory neurotransmitter and is synthesized via biotransformation of monosodium glutamate (MSG) to GABA by lactic acid bacteria. In this study, we first used a GABA-enhanced PT extract, wherein GABA was enhanced by feeding MSG to PT. The underlying mechanisms preventing stress and insomnia were investigated in a corticosterone (CORT)-induced endoplasmic reticulum (ER) stress and chronic restraint stress (CRS)-exposed mouse model, as well as in pentobarbital (45 mg/kg)-induced sleep behaviors in mice. In the present study, the GABA peak was detected in high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) analysis and showed in Ptecticus tenebrifer water extract (PTW) but not in non-PTW extract. The results showed that PTW and Ptecticus tenebrifer with 70% ethanol extract (PTE) exerted neuroprotective effects by protecting against CORT-induced downregulation of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP-response element binding protein (CREB) expression. In addition, PTW (300 mg/kg) significantly reduced CORT levels in CRS-exposed mice. Furthermore, PTW (100 and 300 mg/kg) significantly reduced sleep latency and increased total sleep duration in pentobarbital (45 mg/kg)-induced sleeping behaviors, which was related to serum melatonin levels. In conclusion, our results suggest that PTW exerts anti-stress and sleep-enhancing effects by regulating serum CORT and melatonin levels.

Gut Microbiome and Gut Immunity in Broiler Chickens Fed Allium hookeri Root Powder from Day 10 to 28 (육계 사료 내 삼채뿌리분말 첨가가 장내 미생물 및 장관면역에 미치는 영향)

  • Woonhak Ji;Inho Cho;Sang Seok Joo;Moongyeong Jung;Chae Won Lee;June Hyeok Yoon;Su Hyun An;Myunghoo Kim;Changsu Kong
    • Korean Journal of Poultry Science
    • /
    • v.50 no.3
    • /
    • pp.171-185
    • /
    • 2023
  • This study was conducted to investigate the effects of supplementation of Allium hookeri (AH) root powder on the gut microbiome, immunity, and health in broiler chickens fed experimental diets from d 10 to 28. A total of 60 10-day-old Ross 308 broilers were weighed and assigned to two dietary treatments with 5 birds per cage in a randomized complete block design based on body weight. The two experimental diets consisted of a control diet based on corn-soybean meal and the control diet supplemented with 0.3% AH root powder. All birds were fed ad libitum with experimental diets and water for 18 d. At 28 d, two birds near the median weight from each cage were selected for cecal content and small intestinal tissue sample collection. The addition of AH changed the gut microbiome by increasing probiotic candidate beneficial bacteria such as Enterococcaceae, Lactobacillaceae, Limosilactobacillus, Cuneatibacter, and Ruminoccoides. Regarding gut immunity, the supplementation of AH resulted in changes in intestinal immune cells, including reduced CD3+CD4+ T cells, which are a type of helper T cell, in the small intestine of birds (P=0.049). Additionally, there was a tendency to increase the expression of antioxidant function-related gene such as GPX2 (P=0.060), but no significant changes were observed in cytokines such as IL1b, IL6, and IL10. Overall, the addition of AH root powder may have positive effects on the microbiome of the chickens. This may help promote gut health in broiler chickens at the age of d 10 to 28.

Efficacy and Safety Evaluation of an Air Sterilizer Equipped With an Electrolytic Salt Catalyst for the Removal of Indoor Microbial Pollutants (염촉매 전기분해 공기살균기의 효능 평가)

  • Sun Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Kyung Il Jung;Gye Rok Jeon;Soon Cheol Ahn
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.500-508
    • /
    • 2024
  • Recently, there has been increasing interest in enhancing the indoor air quality, particularly in response to the growing utilization of public facilities. The focus of this study was on assessing the efficacy and safety of an air sterilizer equipped with electrolytic salt catalysts. To that end, we evaluated the antimicrobial activity of the vapor spraying from the air sterilizer and its cytotoxicity in condensed form on human cell lines (HaCaT, BEAS-2B, and THP-1). Against the test organisms, which comprised five bacterial strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium) and one fungal strain (Candida albicans), the air sterilizer exhibited relatively high antimicrobial activities ranging from 10.89 to 73.98% following 1 and 3 hr of vapor spraying, which were notably time-dependent. Importantly, cytotoxicity assessments on human cells indicated no significant harmful effect even at a 1.0% concentration. Comprehensive safety evaluations included morphological observations, gene expression (Bcl-2, Bax) tests, and FACS analysis of intracellular ROS levels. Consistent with previous cytotoxicity findings, these estimates demonstrated no significant changes, highlighting the air sterilizer's safety and antimicrobial activities. In a simulated 20-hr operation within an indoor environment, the air sterilizer not only showed an 89.4% removal of total bacteria but also a 100.0% removal of Escherichia sp. and fungi. This research outlines the potential of the developed electrolytic salt catalyst air sterilizer to effectively remove indoor microbial pollutants without compromising human safety, underscoring the solution that it offers for improving indoor air quality.