• Title/Summary/Keyword: Total arsenic

Search Result 186, Processing Time 0.028 seconds

A Study on the Content of Heavy Metals of Marine Fish in Korean Coastal water (우리나라 일부연안 해산 어류 중의 중금속 함량에 관한 연구)

  • 성덕화;이용욱
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.4
    • /
    • pp.231-240
    • /
    • 1993
  • This study was carried out to find out the content of injurious heavy metals, such as mercury, lead, cadmium and arsenic of marine fish which had been captured in adjacent sea of Korea. From March, 1 to April, 30 in 1993. 60 sample of fishes were collected the adult fish and young fish. These samples were analyzed by the Mercury Analyzer and Inductively Coupled Plasma Emission Spectro Analyzer. The results of the study were summarized as follows: (1) The content of mercury in Therafra chalcograma was 0.112$\pm$0.034 ppm which was higher than other fishes, but Pseudosciaena manchurica and Pampus argenteus had lower (P<0.05). Although lead content of Trichiurus lepturus was 0.359$\pm$0.056 ppm, which was higher than other fishes. The lead content of Theragra chalcograma had lower to the almost same level. The cadmium content of the Theragra chalcograma was 0.069$\pm$0.010 ppm which was higher than other samples, but Pseudosciaena manchurica had 0.039$\pm$0.020 ppm to lower level. Though there was some fluctuation in the arsenic content which was 0.433~3.752 ppm, the arsenic content of Therafra chalcograma was 3.752$\pm$2.873 ppm which was the higher than any other fishes. But there are not statistical significances. (2) Heavy metal content by the maturity of the fishes: Mercury content of the old Pseudosciaena manchurica was 0.055$\pm$0.15 ppm comparing to the young's result of 0.030$\pm$0.009 ppm (P<0.05). Though there were some differences according to the maturity, but thee was no statistical significance. (3) In view of the correlation of the heavy metal content, for Pseudosciaena manchurica, high correlation was founded to r=0.6437 between mercury and cadmium (P<0.05). Though the content of mercury, arsenic cadmium and lead had positive correlation (r=0.2725) and negative correlation (r=-0.3958), but there was no significance at all. The other fishes were not found correlation between the heavy metal content. Positive correlation was found between age with mercury in Pseudociaena manchurica (r=0.7018, P<0.05). The negative correlation of age with lead content in the Pseudociaena Manchurica was signigicant (P<0.05). The correlation coefficient was r=-0.7623. The age with mercury content in Coloabis saira had high correlation (r=0.7201, P<0.05). Through the above analysis, it can get conclusion that injurious heavy metal content of the fishes in Korea such a mercury, lead, cadmium and arsenic were at the level of natural content. At present, guidelines of maximum residue level allowed at foreign countries about the injurious heavy metal have been used according to the kinds of fish but our government guideline for the marine fishes in only total mercury below 0.7 ppm and lead below 2 ppm. So more aggressive guidelines for the allowance level of heavy metals in marine fishes are required for the safety of foods.

  • PDF

Effect of the Physicochemical Properties of Soil on the Arsenic Bioaccessibility (비소용출에 대한 토양의 물리화학적 특성 영향)

  • Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.731-737
    • /
    • 2006
  • Four well-characterized soils collected from A- and B-horizon in the Department of Energy Oak Ridge Reservation in USA, mainly distributed with Inceptisol(Inc) and Ultisol(Ult) soils, were used in this work. The bioaccessibility of arsenic as well as oxidation phenomena of As(III) was investigated with soils spiked with As(III) and As(V) using a physiologically based extraction test(PBET) at pH 1.5 and 1:100 soil to solution ratio. Also effect of aging time on the bioaccessibility of arsenic was investigated over the 6 months. After 48 hours(fresh) contacting As(V) solution with soils, all soils rapidly and strongly sequestrated As(V), especially Ult-B. However, little sequestration was observed after 3-months. When As(III) was spiked on the same soils, a great portion of As(III) was oxidized to As(V) after 48 hrs, especially Inc-A and Ult-A soils, which is strongly related with Mn content in soils. By using As(III)-spiked soils, much reduced bioaccessibility as total arsenic was observed from Inc-B and Ult-B soils over the 6 months aging time compared to that from Inc-A and Ult-A soils. This result can be explained by the continuous sequestration of As(V), produced from oxidation of As(III), onto Inc-B and Ult-B soils having much amount of iron. The trend of As(III) sequestration over six months aging time was quite similar with that of As(V) sequestration.

Current Status and Technologies for Treating Groundwater Arsenic Pollution in Bangladesh (방글라데시 지하수 내 비소 오염 현황 및 처리기술)

  • Tashdedul, Haque Md;Reyes, Nash Jett DG.;Jeon, Minsu;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.142-154
    • /
    • 2022
  • Arsenic (As) contamination in groundwater is one of the main problems in Bangladesh. As toxicity causes serious human health problems such as edema, skin cancer, bladder cancer, lung cancer, hyperkeratosis, premature birth, and black foot disease. As contamination in groundwater mainly originates from the geological characteristics of the area due to the influence of anthropogenic activities. Since most of the people in Bangladesh rely on tube well for drinking water, it is necessary to investigate the current status of As pollution and identify the treatment technologies that can be used to provide arsenic-free drinking water in water-scarce areas. A total of 92 papers were reviewed in this study to present a complete overview of the recent status of groundwater As contamination in Bangladesh and different low-cost remediation technologies. A method for evaluating the relative feasibility of different treatment technologies was also utilized to determine the most appropriate technologies for groundwater As treatment in Bangladesh. The districts with the highest groundwater As contamination include Brahamanbariya, Tangail, Barisal, Pabna, Patuakhali, Kurigram, Magura, and Faridpur, with concentrations exceeding 0.05 mg/L. Only six districts had relatively low groundwater arsenic concentrations (0.01 mg/L), including Kushtia, Khagrachari, Jessore, Dinajpur, Meherpur, and Munshiganj. There were a number of technologies used for treating As in water, but aerated electrocoagulation, Mg-Fe-based hydrotalcite-like compound, and electro-chemical As remediation (ECAR) reactor were found to be the most feasible treatment methods for As. Overall, the investment, operational, and maintenance costs, availability of materials, and expertise requirements should be considered when selecting the most appropriate treatment method for As in water.

Risk Analysis of Arsenic in Rice Using by HPLC-ICP-MS (HPLC-ICP-MS를 이용한 쌀의 비소 위해도 평가)

  • An, Jae-Min;Park, Dae-Han;Hwang, Hyang-Ran;Chang, Soon-Young;Kwon, Mi-Jung;Kim, In-Sook;Kim, Ik-Ro;Lee, Hye-Min;Lim, Hyun-Ji;Park, Jae-Ok;Lee, Gwang-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.291-301
    • /
    • 2018
  • BACKGROUND: Rice is one of the main sources for inorganic arsenic among the consumed crops in the world population's diet. Arsenic is classified into Group 1 as it is carcinogenic for humans, according to the IARC. This study was carried out to assess dietary exposure risk of inorganic arsenic in husked rice and polished rice to the Korean population health. METHODS AND RESULTS: Total arsenic was determined using microwave device and ICP-MS. Inorganic arsenic was determined by ICP-MS coupled with HPLC system. The HPLC-ICP-MS analysis was optimized based on the limit of detection, limit of quantitation, and recovery ratio to be $0.73-1.24{\mu}g/kg$, $2.41-4.09{\mu}g/kg$, and 96.5-98.9%, respectively. The inorganic arsenic concentrations of daily exposure (included in body weight) were $4.97{\times}10^{-3}$ (${\geq}20$ years old) $-1.36{\times}10^{-2}$ (${\leq}2$ years old) ${\mu}g/kg\;b.w./day$ (PTWI 0.23-0.63%) by the husked rice, and $1.39{\times}10^{-1}$ (${\geq}20$ years old) $-3.21{\times}10^{-1}$ (${\leq}2$ years old) ${\mu}g/kg\;b.w./day$ (PTWI 6.47-15.00%) by the polished rice. CONCLUSION: The levels of overall exposure to total and inorganic arsenic by the husked and polished rice were far lower than the recommended levels of The Joint FAO/WHO Expert Committee on Food Additives (JECFA), indicating of little possibility of risk.

Optimal Conditions for As(III) Removal by Filtration System Packed with Different Ratio of Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사 충전비를 달리한 여과시스템에서 3가 비소 제거의 최적 조건)

  • Chang, Yoon-Young;Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1186-1191
    • /
    • 2006
  • Removal efficiency of As(III) through oxidation and adsorption in column reactors was investigated at different ratios of manganese-coated sand(MCS) and iron-coated sand(ICS) : MCS-alone, ICS-alone and both of ICS and MCS. The breakthrough of arsenic immediately occurred from a column reactor with MCS-alone. However, most of the arsenic present in the effluent was identified as As(V) due to the oxidation of As(III) by MCS. While five-times delayed breakthrough of arsenic was observed from a column reactor with ICS-alone. At a complete breakthrough of arsenic, the removed As(III) was 36.1 mg with 1 kg ICS. To find an optimum ratio of ICS and MCS in the column packed with both ICS and MCS, the removal efficiency of As(III) was investigated at three different ratios of ICS/MCS with a fixed amount of ICS. The breakthrough time of arsenic was quite similar in the different ratios ICS/MCS. However, much slower breakthrough of arsenic was observed as the ratio of ICS/MCS decreased. As the ratio of ICS/MCS decreased the concentration of As(III) in the effluent decreased and then showed below 50 ppb at an equal amount of ICS and MCS, suggesting more efficient oxidation of As(III) by greater amount of MCS. When a complete breakthrough of arsenic occurred, the removed total arsenic with an equal amount of ICS and MCS was 68.5 mg with 1 kg of filter material.

A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water (알럼 및 철수산화물 흡착제의 광산배수 내 비소 흡착성능 비교연구)

  • Choi, Kung-Won;Park, Seong-Sook;Kang, Chan-Ung;Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.689-698
    • /
    • 2021
  • Since the mine reclamation scheme was implemented from 2007 in Korea, various remediation programs have been decontaminated the pollution associated with mining and 254 mines were managed to reclamation from 2011 to 2015. However, as the total amount of contaminated mine drainage has been increased due to the discovery of potential hazards and contaminated zone, more efficient and economical treatment technology is required. Therefore, in this study, the adsorption properties of arsenic was evaluated according to the adsorbents which were derived from water treatment sludge(Alum based adsorbent, ABA-500) and granular ferric hydroxide(GFH), already commercialized. The alum sludge and GFH adsorbents consisted of aluminum, silica materials and amorphous iron hydroxide, respectively. The point of zero charge of ABA-500 and GFH were 5.27 and 6.72, respectively. The result of the analysis of BET revealed that the specific surface area of GFH(257 m2·g-1) was larger than ABA-500(126~136 m2·g-1) and all the adsorbents were mesoporous materials inferred from N2 adsorption-desorption isotherm. The adsorption capacity of adsorbents was compared with the batch experiments that were performed at different reaction times, pH, temperature and initial concentrations of arsenic. As a result of kinetic study, it was confirmed that arsenic was adsorbed rapidly in the order of GFH, ABA-500(granule) and ABA-500(3mm). The adsorption kinetics were fitted to the pseudo-second-order kinetic model for all three adsorbents. The amount of adsorbed arsenic was increased with low pH and high temperature regardless of adsorbents. When the adsorbents reacted at different initial concentrations of arsenic in an hour, ABA-500(granule) and GFH could remove the arsenic below the standard of drinking water if the concentration was below 0.2 mg·g-1 and 1 mg·g-1, respectively. The results suggested that the ABA-500(granule), a low-cost adsorbent, had the potential to field application at low contaminated mine drainage.

A Study on the Heavy Metal Contents in Carassius auratus of Jeonlabuk-do Areas (전라북도내 서해안 지역의 하천에 서식하는 붕어의 중금속 함량에 관한 연구)

  • 김인숙;한성희;오성기
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.4
    • /
    • pp.484-488
    • /
    • 1993
  • The heavy metal contents in Carassius auratus, that were sampled from Nov.1 to Nov. 31, 1991 at 6 areas in Joenlabuk-do. The mercury contents was determined by mercury analyzer using the combustion Goldamal-gamation method. The arsenic contents were determined by spectrophotometry using silver diethyl ditiho carbamate method. The contents of other heavy metals were determined by inductively coupled plasma spectrometer method. The levels of total mercury, arsenic, cadmium, lead, cupper, manganes, and zinc were determined and the results were summarized as follows : The 6 areas over all range(ppm) were Hg : 0.0167~0.0407, As : N.D.~0.0018, Cd : 0.1256~0.1935, Pb : 0.3536~0.6593, Cu : 0.2094~0.3792, Mn : 2.9059~6.9335, Zn : 14.3095~48.1615ppm. Among the seven heavy metals contents, the higest was zinc and the lowest was arsenic. The results show that contents of Hg As, Cd, Pb, Mn and Zn in Carassius auratus were lower than the FAO/WHO maximum allowance.

  • PDF

Measurement Uncertainty of Arsenic Concentration in Ambient PM2.5 Determined by Instrumental Neutron Activation Analysis (기기 중성자방사화분석을 이용한 대기 중 PM2.5 내 Arsenic 농도 분석의 측정 불확도)

  • Lim, Jong-Myoung;Lee, Jin-Hong;Moon, Jong-Wha;Chung, Yong-Sam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1123-1131
    • /
    • 2008
  • In this study, measurement uncertainty of instrumental neutron activation analysis was evaluated for ambient As concentration in PM2.5. Expanded uncertainties of the measurements were calculated by applying both ISO-GUM approximation and Monte Carlo Simulation(MCS). The estimate of As concentration on a specific day by the Monte Carlo Simulation differed from that of ISO-GUM approximation by less than 4%. Relative expanded uncertainties of As concentrations from a total number of 60 PM2.5 samples were also estimated to be more or less than 10% with 95% confidence level using the Monte Carlo Simulation. Sensitivity test of the measurement uncertainties showed that $\gamma$-ray counting error(62.3%), efficiency(18.5%), air volume(12.3%), neutron flux(2.3%), and absolute gamma-intensity(1.8%) are major factors of uncertainty variations.

Metal concentrations of Chinese herbal medicine products in the United States

  • Lee, Sun-Dong;Shin, Heon-Tae;Park, Hae-Mo;Ko, Seong-Gyu;Kook, Yoon-Bum;Ryu, Jin-Yeol;Kim, Hyun-Do;Hu, Howard;Park, Sung-Kyun
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.294-303
    • /
    • 2010
  • We determined arsenic, lead, mercury and cadmium concentrations in Chinese herbal medicines sold in the United States by medical use parts. 54 kinds of herbal products including 9 medical use parts (radix, rhizoma, cortex, pericarpium, fructus, lignum, semen, folium, and herba) were analyzed using inductively coupled plasma-mass spectrometry for arsenic, lead and cadmium, and using mercury analyzer for mercury. Arsenic (median concentration, 0.25 mg/g), mercury (0.20 mg/g), lead (3.78 mg/g) and cadmium (0.39 mg/g) were detected in 71%, 54%, 35%, and 18% of 143 herbal medicine samples, respectively. A total of 27% and 12% of 143 products analyzed contained mercury and cadmium above the regulatory standards. Herba and folium (leaves of herbal plants) were the most contaminated parts from metals, whereas pericarpium, lignum and semen (outer layers and seeds) were less contaminated. This study suggests that metal contamination is different by medical use parts. Our findings provide further evidence that efforts to protect people using traditional remedies from metal intoxication should be made to enforce the regulatory standards.

Arsenic environmental contamination, chemical speciation and its behaviour in the water system from some abandoned Au-Ag mines, Korea

  • Yi Ji-Min;Chon Hyo-Taek;Lee Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.522-525
    • /
    • 2003
  • Mine waters, surface waters and groundwaters were sampled around seven Au-Ag mine areas (Dongil, Okdong, Dongjung, Songcheon, Ssangjeon, Dogok and Gubong Au-Ag mines). The main contamination sources of As in these abandoned Au-Ag mines can be suggested as mine tailings and waste rocks including the sulfide gangue minerals (arsenopyrite). The relatively high concentration of As in mine waters was shown in the Dongil (524 ${\mu}g/L$) and the Dogok (56 ${\mu}g/L$) mine areas. Arsenic concentrations in stream waters from the Dongil ($0.9\~118{\mu}g/L$), the Songchon ($0.8\~63{\mu}g/L$), the Ssangjeon ($1.6\~109{\mu}g/L$) and the Gubong ($3.6\~63{\mu}g/L$) mine areas exceeded the permissible level for stream water in Korea. Groundwaters collected from the Dongil ($0.9\~64{\mu}g/L$ ), the Okdong ($0.2\~69{\mu}g/L$) and the Gubong ($0.5\~101{\mu}g/L$) mine areas contained high As concentration to cause the arsenicosis in these areas. In As speciation, the concentration ratios of As(III) to As(total) present up to $75\%$ and $100\%$ in stream waters from the Okdong and the Songcheon mines, and $70\%$ in groundwaters from the Okdong and the Dongjung mines. Arsenic concentration decreases downstream from the tailing dump correlatively with pH and Fe concentration. Highly elevated As concentrations are found in the dry season (such as April and March) than in the wet season (September) due to the dilution effect by heavy rain during summer in stream waters from the Dongil and the Songcheon mine areas.

  • PDF