• Title/Summary/Keyword: Total arsenic

Search Result 187, Processing Time 0.1 seconds

Arsenic-Induced Differentially Expressed Genes Identified in Medicago sativa L. roots

  • Rahman, Md. Atikur;Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Hwang, Tae Young;Choi, Gi Jun;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.243-247
    • /
    • 2016
  • Arsenic (As) is a toxic element that easily taken up by plants root. Several toxic forms of As disrupt plant metabolism by a series of cellular alterations. In this study, we applied annealing control primer (ACP)-based reverse transcriptase PCR (polymerase chain reaction) technique to identify differentially expressed genes (DEGs) in alfalfa roots in response to As stress. Two-week-old alfalfa seedlings were exposed to As treatment for 6 hours. DEGs were screened from As treated samples using the ACP-based technique. A total of six DEGs including heat shock protein, HSP 23, plastocyanin-like domain protein162, thioredoxin H-type 1 protein, protein MKS1, and NAD(P)H dehydrogenase B2 were identified in alfalfa roots under As stress. These genes have putative functions in abiotic stress homeostasis, antioxidant activity, and plant defense. These identified genes would be useful to increase As tolerance in alfalfa plants.

Oxalic Acid-based Remediation of Arsenic-contaminated Soil (옥살산 기반의 비소오염토양 정화 연구)

  • Lee, Myeong Eun;Jeon, Eun-Ki;Kim, Jong-Gook;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Arsenic (As) usually is bound to amorphous iron oxides in the soils, and it can be removed via dissolution of iron oxides. Inorganic acid and chelating agent are widely used to extract As in the soil washing. However, the overall performance is highly dependent on the state of As fractionation. In this study, oxalic acid and inorganic acids (HCl, $H_2SO_4$, and $H_3PO_4$) were applied to enhance the dissolution of iron oxides for remediation of As-contaminated soils. Oxalic acid was most effective to extract As from soils and removal of As was two times greater than other inorganic acids. Additionally, 75% of As bound to amorphous iron oxides was removed by 0.2 M oxalic acid. Arsenic removal by oxalic acid was directly proportional to the sum of labile fractions of As instead of the total concentration of As. Therefore, the oxalic acid could extract most As bound to amorphous iron oxides.

Prediction of Arsenic Uptake by Rice in the Paddy Fields Vulnerable to Arsenic Contamination

  • Lee, Seul;Kang, Dae-Won;Kim, Hyuck-Soo;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • There is an increasing concern over arsenic (As) contamination in rice. This study was conducted to develope a prediction model for As uptake by rice based on the physico-chemical properties of soil. Soil and brown rice samples were collected from 46 sites in paddy fields near three different areas of closed mines and industrial complexes. Total As concentration, soil pH, Al oxide, available phosphorus (avail-P), organic matter (OM) content, and clay content in the soil samples were determined. Also, 1.0 N HCl, 1.0 M $NH_4NO_3$, 0.01 M $Ca(NO_3)_2$, and Mehlich 3 extractable-As in the soils were measured as phytoavailable As concentration in soil. Total As concentration in brown rice samples was also determined. Relationships among As concentrations in brown rice, total As concentrations in soils, and selected soil properties were as follows: As concentration in brown rice was negatively correlated with soil pH value, where as it was positively correlated with Al oxide concentration, avail-P concentration, and OM content in soil. In addition, the concentration of As in brown rice was statistically correlated only with 1.0 N HCl-extractable As in soil. Also, using multiple stepwise regression analysis, a modelling equation was created to predict As concentration in brown rice as affected by selected soil properties including soil As concentration. Prediction of As uptake by rice was delineated by the model [As in brown rice = 0.352 + $0.00109^*$ HCl extractable As in soil + $0.00002^*$ Al oxide + $0.0097^*$ OM + $0.00061^*$ avail-P - $0.0332^*$ soil pH] ($R=0.714^{***}$). The concentrations of As in brown rice estimated by the modelling equation were statistically acceptable because normalized mean error (NME) and normalized root mean square error (NRMSE) values were -0.055 and 0.2229, respectively, when compared with measured As concentration in the plant.

Monitoring of Heavy Metal Contents in Commercial Herbal Medicines in Korea: Cultivated Herbal Medicines in the Seoul and Daegu Areas (국내 유통 한약재의 중금속 함량 모니터링 -서울과 대구지역 한약재 중심으로 -)

  • Jang, Seol;Lee, Ah-Reum;Lee, A-Eong;Choi, Go-Ya;Kim, Ho-Kyoung
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.1
    • /
    • pp.30-39
    • /
    • 2015
  • Objectives: This study was conducted to determine the heavy metal contents in commercial herbal medicines in Korea. Methods: Monitoring of lead, arsenic, cadmium and mercury was carried out on 116 samples of eleven types of herbal medicines. Among the total samples, 71 samples were domestic and 45 were imported. The samples were digested using the microwave method. The heavy metal contents were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES) and a mercury analyzer. ICP-AES was used to analyze lead, arsenic cadmium. Mercury was analyzed by the amalgamation method. Results: The mean values of the heavy metal contents in the herbal medicines were Pb 0.64mg/kg, As 0.26mg/kg, Cd 0.07mg/kg and Hg 0.004mg/kg. Of the total samples, one violated the MFDS (Ministry of Food and Drug Safety) regulatory guidance on heavy metals in herbal medicines. Lead was detected at more than 5mg/kg in one sample. The measured values of arsenic, cadmium and mercury in the herbal medicines showed levels lower than the recommended levels for herbal medicines in MFDS regulatory guidance. In the comparison of domestic samples with imported herbal medicines, it was found that one domestic sample surpassed the maximum residue limits for lead. Conclusion: These results will be used to establish the regulation and control of heavy metal contents in herbal medicines. In addition, continuous monitoring is needed to ensure confidence in and the safety of these herbal medicines.

Behaviors of Arsenic in Paddy Soils and Effects of Absorbed Arsenic on Physiological and Ecological Characteristic of Rice Plant I. Distribution of Arsenic Fractions in Paddy Soils and their Relations to Arsenic Content in Brown Rice (토양중(土壤中) 비소(砒素)의 행동(行動)과 수도(水稻)의 비소흡수(砒素吸收)에 의(依)한 피해(被害) 생리(生理), 생태(生態)에 관(關)한 연구(硏究) I. 토양중(土壤中) 비소(砒素)의 형태(形態)와 현미중(玄米中) 비소함량(砒素含量)과의 관계(關係))

  • Lee, Min-Hyo;Lim, Soo-Kil;Kim, Bok-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 1986
  • This study was carried out to investigate the distribution of arsenic (As) fractions in paddy soils in relation to some soil characteristics and to find out the relationship between As fractions in soil and As content in brown rice. Soils and rice samples were collected from paddy field adjacent to arsenic mining and refinery sites. Sequential extraction procedures were used to fractionate As in soils into the designated forms of water soluble-As, Al-As, Fe-As, Ca-As, and residual-As. The results obtained were as follows: 1. The percent distribution of As fractions in soil showed a wide difference depending on some soil properties. The relative abundance of the extractable inorganic As fractions was in the order of Fe-As>Al-As>Ca-As>Water soluble-As regardless of mining and refinery sites. Residual-As fraction was more abundant in mining site than in refinery site. 2. With increasing soil pH, the percent distribution of Fe-As and Al-As fractions were decreased, but that of Ca-As and Residual-As fractions increased. The percent distribution of Al-As fraction in soil was negatively correlated with soil CEC, but others showed positive relationships. 3. Active Al and Fe content, and exchangeable Ca content in soil were positively correlated with the percent distribution of Al-As, Fe-As, and Ca-As fractions in soil respectively, and higher correlation between them was shown in mining site than in refinery site. 4. Soil As fractions, except for water soluble-As, showed significant correlation with among each others and also with 1N HCl extration method using as the common soil As extractant in Korea. 5. Arsenic content in brown rice had highly significant correlation with Al-As fraction in soil and it also showed significant correlation with Fe-As and Ca-As fractions, Total-As, and 1N-HCl extractable As.

  • PDF

Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine (송천광산의 풍화광미 내 중금속 및 비소 거동 특성)

  • Lee, Woo-Chun;Kim, Young-Ho;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-139
    • /
    • 2010
  • Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

Exposure and Risk Assessments of Multimedia of Arsenic in the Environment (환경 중 비소의 매체통합 노출평가 및 위해성평가 연구)

  • Sim, Ki-Tae;Kim, Dong-Hoon;Lee, Jaewoo;Lee, Chae-Hong;Park, Soyeon;Seok, Kwang-Seol;Kim, Younghee
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.152-168
    • /
    • 2019
  • The element arsenic, which is abundant in the Earth's crust, is used for various industrial purposes including materials for disease treatment and household goods. Various human activities, such as the disposal of soil waste, metal mining and smelting, and combustion of fossil fuels, have caused the pollution of the environment with arsenic. Recently, guidelines for arsenic in rice have been adopted by the Korean ministry of food and drug safety to prevent health risks based on rice consumption. Because of the exposure to arsenic and its accumulation in the human body through various channels, such as air inhalation, skin contact, ingestion of drinking water, and food consumption, integrated multimedia risk assessment is required to adopt appropriate risk management policies. Therefore, integrated human health risk assessment was carried out in this study using integrated exposure assessment based on multimedia (e.g., air, water, and soil) and multi-route (e.g., oral, inhalation, and dermal) scenarios. The results show that oral uptake via drinking water is the most common pathway of arsenic into the human body, accounting for 57%-96% of the total arsenic exposure. Among various age groups, the highest exposures to arsenic were observed in infants because the body weight of infants is low and the surface areas of infant bodies are large. Based on the results of the exposure assessment, the cancer and non-cancer risks were calculated. The cancer risk for CTE and RME is in the range of 2.3E-05 to 6.7E-05 and thus is negligible because it does not exceed the cancer probability of 1.0E-04 for all age groups. On the other hand, the cancer risk for RME varies from 6.4E-05 to 1.8E-04 and from 1.3E-04 to 1.8E-04 for infants and preschool children, exceeding the excess cancer risk of 1.0E-04. The non-cancer risks range from 5.4E-02 to 1.9E-01 and from 1.5E-01 to 6.8E-01, respectively. They do not exceed the hazard index 1 for all scenarios and all ages.

Risk Assessment for Heavy Metals in Korean Foods and Livestock Foodstuffs (한국인의 대표식품 및 축산식품에 대한 중금속 위해도 평가)

  • Kwon, Young-Min;Lee, Kyoung-Hee;Lee, Haeng-Shin;Park, Seon-Oh;Park, Jung-Min;Kim, Jin-Man;Kang, Kyung-Mo;No, Ki-Mi;Kim, Dong-Sul;Lee, Jong-Ok;Hong, Moo-Ki;Choi, Dal-Woong
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.373-389
    • /
    • 2008
  • This study was conducted to evaluate exposure level and risk of heavy metals in livestock foodstuffs and Korean foods. Based on the "Food Intake Data," a part of the 2005 National Health & Nutrition Survey and the "2005 Seasonal Nutrition Survey", 113 Korean foods items were selected. 3 samples from different manufacturers of each 113 items of Korean foods were purchased on summer and fall, so total 678 samples were used. The food groups were classified into 15 categories. For the livestock foodstuffs category, meats and poultry (chicken, pork, pork belly, beef, beef feet soup), milks and dairy products (milk, ice cream, liquid yoghourt, sherbet), eggs (egg) were selected. It was found that the daily amount of heavy metals intake (mg/person/day) from livestock foodstuffs is 0.00020 arsenic, 0.00000 cadmium, 0.00020 lead, and 0.00006 mercury, and the daily amount of heavy metals intake (mg/person/day) from Korean foods is 0.0265 arsenic, 0.0083 cadmium, 0.0067 lead, and 0.0028 mercury. Daily amount of heavy metals intake from livestock foodstuffs was low among the food groups. For risk assessment, PDI (Probable Daily Intake) was calculated and compared with PTWI (Provisional Tolerable Weekly Intake) of JECFA (Joint FAO/WHO Expert Committee on Food Additive). Relative hazard of these livestock foodstuffs was 0.006% in arsenic, 0.000% in cadmium, 0.085% in lead, and 0.149% in mercury. Relative hazard of Korean foods was 0.941% in arsenic, 14.676% in cadmium, 3.319% in lead, and 6.860% in mercury. Thus, livestock foodstuffs and Korean foods were as safe as satisfied with the recommended standards of JECFA.

A Probabilistic Assessment of Human Health Risk from Arsenic-Contaminated Rice Grown Near The Mining Areas of Korea

  • Paik, Min-Kyoung;Kim, Won-Il;Yoo, Ji-Hyock;Kim, Jin-Kyoung;Im, Geon-Jae;Hong, Moo-Ki
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.2
    • /
    • pp.143-147
    • /
    • 2010
  • Chronic exposure to Arsenic (As) causes significant human health effects including various cancers. Total As concentrations from 300 polished rice samples cultivated near the mining areas in Korea were analyzed to estimate a probabilistic assessment of human health risk from As-contaminated rice. The mean of total As concentrations in rice was 0.09 mg/kg and lognormal distribution model was set for total As concentrations. Human health risk for As in rice was estimated using gender-specific rice consumption data and average daily dose (ADD). While cancer risk (CR) and hazard quotient (HQ) were calculated using oral cancer slope factor (OCSF) and Reference dose (RfD) suggested by the U.S. EPA. Mean of CR posed by total As was 2.16 (for male) and 1.83 (for female) per 10,000. The HQ for general population from rice cultivated near the mining areas in Korea was below 1 as the $50^{th}$ percentile of general population. However, less than 10% of general population consuming rice cultivated near the mining areas would exceed 1.0. This result is similar with those from each gender-specific group.

Salinity and Heavy Metal Contents of Solar Salts Produced in Jeollanamdo Province of Korea (전라남도 지역에서 생산된 천일염의 염도 및 중금속 함량)

  • Lee, Kang-Deok;Park, Jeong-Wook;Choi, Cha-Ran;Song, Hyun-Woo;Yun, Su-Kyoung;Yang, Ho-Chul;Ham, Kyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.6
    • /
    • pp.753-758
    • /
    • 2007
  • To assess the safety of solar salts of Jeollanamdo province where most of Korean solar salts are produced, 433 samples of solar salts in total were collected and analyzed for their contents of sodium chloride and heavy metals (lead, cadmium, arsenic and mercury). Sodium chloride contents ranged from 80 to 85% in 63% of solar salts analyzed. Lead was not detected in 77% of solar salt samples and showed a value of below the maximum permissible limit (2 ppm) in other samples. Cadmium was not detected in most samples (78%), and the other samples where cadmium was detected showed a value far below the maximum permissible limit (0.5 ppm) except for three ones. Arsenic was detected in only four samples, but their concentrations were far below the permissible limit (0.1 ppm). Mercury was not detected in all samples. There were some differences between producing areas in the levels of sodium chloride and lead of solar salts, but the contents of cadmium, arsenic and mercury did not show significant regional differences. These results clearly indicate that solar salts produced from Jeollanamdo province are safe in the aspects of lead, cadmium, arsenic and mercury contents.