• Title/Summary/Keyword: Total Water Load Management System

Search Result 117, Processing Time 0.02 seconds

Establishment of Target Water Quality for TOC of Total Water Load Management System (오염총량관리제도의 TOC 목표수질 설정 방안)

  • Kim, Yong Sam;Lee, Eun Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.520-538
    • /
    • 2019
  • In this study, it was proposed that a method of setting the target water quality for TOC using the watershed model and the load duration curves to manage non-biodegradable organics in the total water load management system. To simulate runoff and water quality of the watershed, the HSPF model is used which is appropriate for urban and rural areas. Additionally, the load duration curve is used to reflect the variable water quality correlated with various river flow rates in preparing the TMDL plans in the U.S. First, the model was constructed by inputting the loads calculated from the pollutant sources in 2015. After the calibration and verification process, the water quality by flow conditions was analyzed from the BOD and TOC simulation results. When the BOD achieved the target water quality by inputting the target year loads for 2020, the median and average values of TOC were proposed for the target water quality. The provisional method of TOC target water quality for the management of non-biodegradable organics, which is one of the challenges of the total water load management system, was considered. In the future, it is expected to be used as basic data for the conversion of BOD into TOC in the total water load management system.

Integration of Total Pollution Load Management System and Environmental Impact Assessment related System (수계 오염총량관리제와 환경영향평가제도의 통합운영방안)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.359-367
    • /
    • 2003
  • The total pollution load management system of watershed has been implemented upon Special Law pertaining to the Han River Watershed Water Quality Improvement and Residents Support, Special Law pertaining to the Nakdong River Watershed Water Management and Residents Support, Special Law pertaining to the Youngsan River Watershed Water Management and Residents Support, and Special Law pertaining to the Seomjin River Watershed Water Management and Residents Support in Korea since 2002. But many other similar systems with total pollution load management system of watershed are being operated separately or independently, even though its purpose is nearly same with those of the total maximum pollutants load management in Law on Water Quality Environmental Protection, environmental impact assessment(EIA) in Law of Impact Assessment on Environment, Transportation and Disaster and Pre-environmental assessment of Environmental Policy Act. Therefore the contents of total pollution load management system of watershed and many other related systems could be overlapped and at some times have inconsistency among them. This study suggests first the integrated operation of total pollution load management system of watershed, EIA, pre-environmental assessment, urban planning, and sewage planning and secondly EIA system development by integration of EIA and pre-environmental assessment and strategic environmental assessment(SEA).

A Study on the Final Evaluation Criteria of Allocation Exceedance Regional in Total Maximum Daily Load (오염총량관리 할당부하량 초과지역의 최종 평가기준에 관한 연구)

  • Oh, Seung Young;Han, Mideok;Kim, Seok Gyu;Ahn, Ki Hong;Kim, Oksun;Kim, Yong Seok;Park, Ji Hyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.450-457
    • /
    • 2016
  • The Total Maximum Daily Load (TMDL) is a watershed management system that involves the establishment of the target water quality, the calculation of permission loading (allocation loading), and the control of total pollutants for each unit watershed. Allocation loading is assessed through the comprehensive implementation assessment of the previous year's plan. Assessment results are used for follow-up management measures such as the limit of development and updating of TMDL Management Implementation Plans for the next planning period. Although detailed assessment criteria are important, they are not currently available. Therefore, we suggested assessment criteria by comparing two methods('integration method' and 'separation method') using combination point and non-point discharge loading. We also examined the penalty criteria considering controllable load local government and updating methods of the TMDL Management Implementation Plan for the next planning period.

Development of Desktop-Based LDC Evaluation System for Effectiveness TMDLs (효과적인 오염총량관리를 위한 데스크탑 기반의 LDC 평가 시스템 개발)

  • Ryu, Jichul;Hwang, Ha-Sun;Lee, Sung-Jun;Kim, Eun Kyoung;Kim, Yong Seok;Kum, Donghyuk;Lim, Kyoung Jae;Jung, Younghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Load Duration Curve (LDC) can be used as a method for load management of point and non-point pollution source because the LDC easily assesses the water quality corresponding to hydrological changes in a watershed. Recently, the application of LDC to total pollution load management is a growing interest in Korea. In this regard, A desktop-based LDC assessment system was developed in this study to provide convenience to users in water quality evaluation. The developed system can simply produce the LDC by using streamflow and water quality data involved in its database. Also, The system can quantitatively inform the success or failure of the achievement for a target water quality at monthly scale. Furthermore, seasonal water quality and point/non-point pollution load in a watershed can be estimated by this system. We expect that the developed system will contribute to establish local and national policies regarding water management and total pollution load management because of its advantages such as the pollution tracking investigation and the analysis of water quality and pollution loading amount in an ungauged watershed.

The Allocation Methods for Economical Efficiency Using an Optimized Model (최적화 모델을 이용한 경제적인 총량관리 할당기법 연구)

  • Choi, In Uk;Shin, Dong Seok;Kim, Hong Tae;Park, Jae Hong;Ahn, Ki Hong;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.295-303
    • /
    • 2015
  • In Korea, Total Maximum Daily Loads(TMDLs) has been enforced to restore and manage water quality in the watersheds. However, some assesment of implementation plan of TMDLs showed that the achievement of the target water quality is not related to the proper allocation loads because difference of flow duration interval. In the United States, the discharge loads are determined by water quality modeling considering standard flow conditions according to purpose. Therefore, this study tried to develop the allocation method considering economical efficiency using water quality model. For this purpose, several allocation methods being used in the management of TMDLs is investigated and develope an allocation criteria considering regional equality and uniformity. Since WARMF(Watershed Analysis Risk Management Framework) model can simulate the time varying behavior of a system and the various water quality variables, it was selected for a decision support system in this study. This model showed fairly good performance by adequately simulating observed discharge and water quality in Miho watershed. Furthermore, the scenario simulation results showed that the effect of annual average water quality improvement to remove 1kg BOD is more than 25 times, even if point pollutants treatment facility is six times more expensive to operate than non-point pollutants treatment facility.

A Study on the Implementation Method of Total Water Quality Load Management in Sapkyo Lake Watershed (삽교호수계의 수질총량관리제 시행방안 연구)

  • Yi, Sang-jin;Oh, Hye-jeong;Lee, Eun-hyoung;Jung, Jong-Gwan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.807-814
    • /
    • 2006
  • Sapkyo Lake Watershed occupies about 19.3% of total area of Chungnam Province, and it is necessary to make a plan of counter-measure for the maintenance of public waterbody sound as well as to ensure water resources due to urbanization and industrialization in this area so densely populated and excessively developed. Conventionally water quality management has been enforced by concentration-based system which is not considered the carrying capacity of receptors, hence there are no proper measures for the prevention of an excessive pollutant load over a waterbody. So even though emission sources abide by the conventional permission regulation, then the quantity of wastewater is increased continuously and encountered water shortage to use finally. Therefore this research focused on the review of introduction of total water quality management system in Sapkyo Lake watershed to maintain public waterbody sound and to ensure water resources. By doing this research in introduction of the system in advance, it can contribute to establish the methodology on systematic water quality management. Also the application of this system in Sapkyo Lake watershed can promote the sustainable development of the area by harmonizing the environment and regional economy ultimately.

Application of FDC and LDC using HSPF Model to Support Total Water Load Management System (오염총량관리제 지원을 위한 유역모형 기반 유량지속곡선 및 부하지속곡선 활용방안)

  • Lee, Eun Jeong;Kim, Tae Geun;Keum, Ho Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.33-45
    • /
    • 2018
  • In this study, we discussed the application of Watershed model and Load Duration Curves (LDC) in Total Water Load Management System. The Flow Duration Curves (FDC) and the LDC were generated using the results of the daily HSPF model and analyzed on monthly or yearly flow duration variability, and non-point pollutant discharge loads by entire flow conditions. As a result of the calibration and verification of the HSPF model, both the flow and the water quality were appropriately simulated. The simulated values were used to generate the Flow Duration Curve and the Load Duration Curve, and then the excess rate by entire flow conditions was analyzed. The point and non-point pollutant discharge loads for entire flow conditions were calculated. It is possible to evaluate the variability of water quality in specific flow duration through the curves reflecting the flow duration variability and to confirm the characteristics of the pollutant source. For a more scientific Total Water Load Management System, it is necessary to switch from a current system to a system that can take into account the entire flow conditions. For this, the application of the watershed model and load duration curve is considered to be the best alternative.

A Study on the Activation of Non-government Participation in Total Maximum Daily Load System using Private Discharge Facilities Reduction Potential Analysis (개별배출시설 삭감잠재량 분석을 통한 수질오염총량제의 민간참여 활성화 방안 연구)

  • Kim, Hongtae;Shin, Dongseok;Kim, Hyeonjeong;Choi, Inuk;Lee, Miseon;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2015
  • Four major river basin in Korea has been managed with Total Maximum Daily Load(TMDL) System. Water quality indicators as targeted pollutants for TMDL were BOD and TP. In order to satisfy water quality criteria, government allocation using public treatment facilities and its action plan has been used. However, the role to improve water quality were recently faced to its limitation. It is time to require the role of non-government allocation in private discharge facilities to control good water quality. This study investigated three different scenarios in reduction demands of non-government allocations about industry and private sewages. The three different scenarios were discharge under 1) legal water quality standard, 2) water quality level in 2011 and 3) current water quality level with maximum value in group. The results showed that reduction potential in water discharge for TP indicator was 1,118kg/day, under second scenario with 20% of deduction. This results arrived at 42% of whole reduction potential costs and 0.012mg/L improvement in water quality. In conclusion, to intrigue voluntary participation in non-government allocation, various benefits such as tax reduction, tax exemption, and water quality trading should be provided.

Necessity for Expansion of Total Phosphorus Management in the Geum River Watershed (금강수계에서 총인관리의 확대 필요성)

  • Park, Jae Hong;Lee, Jae Kwan;Oh, Seung Young;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.400-408
    • /
    • 2013
  • Total phosphorus was set as a target indicator to prevent eutrophication and algae growth, etc., in three major rivers (Nakdong River, Geum River and Yeongsang/Seomjin River) for the second phase (2011 ~ 2015) in total maximum daily loads (TMDLs) system. However, total phosphorus management was restrictively introduced, i.e., upstream of the Lake Daechung, in the Geum River watershed. Total phosphorus concentration and trophic levels in downstream of the Lake Daechung (include Mangyeong and Dongjin rivers) were increased more than upstream. Therefore, it is necessary to expand total phosphorus management in all watersheds of the Geum River. If total phosphorus was managed in all area of the Geum River watershed, it is possible to decrease total phosphorus concentration and trophic levels, and solve the unbalanced water quality between up and downstream of the Lake Daechung.

Estimation of Nonpoint Discharge Coefficient for the Management of Total Maximum Daily Load - Rainfall Discharge Ratio on the Specific Design Flow (수질오염총량관리를 위한 비점배출계수 산정 - 특정 기준유량 시기의 강우배출비)

  • Park, Jundae;Park, Juhyun;Rhew, Doughee;Jeong, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.452-457
    • /
    • 2008
  • Nonpoint source (NPS) pollution is caused by rainfall moving over and through the ground. As the runoff moves, it picks up and carries away various pollutants from NPS. The discharge pattern of NPS pollutant loads is affected by the distribution of the rainfall during the year. This study analysed relationship between the rainfall event and the stream flow rate, and estimated the rainfall discharge ratio on the specific design flow which can be used as nonpoint discharge coefficient for the estimation of NPS pollution load. It is considered that nonpoint discharge coefficient can be effectively used for the calculation of NPS pollution load at the time of water quality modelling for the management of Total maximum daily load (TMDL).