• Title/Summary/Keyword: Total Utility

Search Result 535, Processing Time 0.025 seconds

Utilitarian Value and its Effect on Continuance Intention in Smartphone-based Mobile Commerce (스마트폰 기반 모바일상거래의 실용적가치와 지속이용의도)

  • Choi, Su-Jeong
    • The Journal of Information Systems
    • /
    • v.25 no.3
    • /
    • pp.31-60
    • /
    • 2016
  • Purpose In 2016, the market size of mobile(m-) shopping goes beyeond more than half of a total of online shopping. People use smartphones as the main device for m-commerce. Under the circmustances, this study attempts to address why people prefer to use smartphone-based m-commerce. In other words, it is necessary to understand the main value that smartphone-based m-commerce creates. Drawing on the studies of consumption value, this study focuses on utilitarian value in predicting customers' continuance intention in the context of smartphone-based m-commerce, recognizing that utilitarian value is a key extrinsic motivation in the goal-oriented, performance-oriented shopping contexts. Furthermore, this study identifies factors affecting customers' utilitarian value from the perspective of benefits and costs, following the notion that it represents the result of evaluating a trade-off of benefits and costs caused by smartphone-based m commerce. More specifically, in this study, ubiquitous service, location-based service (LBS), transaction speed, and price utility belong to the benefit dimension, whereas technology anxiety and cognitive effort belong to the cost dimension. Design/methodology/approach To test the proposed hypotheses, the study conducted partial least squares (PLS) analysis with a total of 294 data collected on users with experience in smartphone-based m-commerce. Findings The results show that first, utilitarian value is increased by the benefits, such as ubiquitous service, transaction speed, and price utility. However, LBS has no direct effect on utilitarian value. Second, the noteworthy finding is that ubiquitous service and LBS greatly increase transaction speed. Third, technology anxiety and cognitive effort considered as the cost dimension are negatively associated with utilitarian value but their impacts on it are non-significant. Finally, the results support the argument that utilitarian value is a determinant of continuance intention. Overall, the findings imply that utilitarian value greatly depends on the peception on benefits rather than the aspect of cost in smartphone-based m-commerce. Overall, the findings offer new insight into the studies of m-commerce by considering and verifying the impacts of its benefits and costs simultaneously.

The Utility of Routine Serial Brain Computed Tomography for Referred Traumatic Brain Injury Patients According to the Severity of Traumatic Brain Injury (전원된 외상성 뇌 손상환자에서 중증도에 따른 일상적인 반복CT의 유용성)

  • Hwang, Jeong In;Cho, Jin Seong;Lee, Seung Chul;Lee, Jeong Hun
    • Journal of Trauma and Injury
    • /
    • v.22 no.2
    • /
    • pp.134-141
    • /
    • 2009
  • Purpose: Patients with traumatic brain injury (TBI) were referred from other hospitals for further management. In addition, patients routinely underwent computed tomography examinations of the head (HCT) in the referral hospitals. The purpose of this study was to evaluate retrospectively the utility of routine HCT scans according to the severity of TBI. Methods: Patients with TBI referred to our hospital between December 2005 and July 2008 were included in this study. We investigated HCT findings, indications for repeat HCT examinations (routine versus a neurological change), and neurosurgical interventions. The head injury severity was divided into three categories according to the Glasgow Coma Scale (GCS) score, including mild, moderate, and severe TBI. The use of neurosurgical interventions between patients who underwent routine HCT scans and patients who underwent HCT scans for a neurological change were compared according to the severity of TBI. Results: A total of 81 patients met the entry criteria for this study. Among these patients, 67%(n=54) of the patients underwent HCT scans on a routine basis, whereas 33%(n=27) of the patients underwent HCT scans for a neurological change. A total of 21 patients showed signs of a worsening condition on the HCT scans. Neurosurgical intervention was required for 23(28.4%) patients. For patients who underwent routine HCT examinations, no patient with mild TBI underwent a neurosurgical intervention. However, one patient with moderate TBI and three(13%) patients with severe TBI underwent neurosurgical interventions. The kappa index, the level of agreement for HCT indications of intervention and referral reasons for intervention, was 0.65 for high hierarchy hospitals and 0.06 for low hierarchy hospitals. Conclusion: Routine serial HCT examinations in the referred hospitals would be useful for patients with severe head injury and for patients from low hierarchy hospitals where no emergency physicians or neurosurgeons are available.

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.

MODELING AND OPTIMIZATION OF THE AIR- AND GAS-SUPPLYING NETWORK OF A CHEMICAL PLANT

  • Han, In-Su;Han, Chong-Hun;Chung, Chang-Bock
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.377-382
    • /
    • 2004
  • This paper presents a novel optimization method for the air- and gas-supplying network comprised of several air compression systems and air and gas streams in an industrial chemical plant. The optimization is based on the hybrid model developed by Han and $Han^1$ for predicting the power consumption of a compression system. A constrained optimization problem was formulated to minimize the total electric power consumption of all the compression systems in the air- and gas-supplying network under various operating constraints and was solved using a successive quadratic optimization algorithm. The optimization approach was applied to an industrial terephthalic acid manufacturing plant to achieve about 10% reduction in the total electric power consumption under varying ambient conditions.

  • PDF

A Linear Programming Model for Production Planning of Photovoltaic Materials (태양광 발전 소재 생산계획을 위한 선형계획 모형)

  • Lee, Seon-Jong;Lee, Hyun Cheol;Kim, Jaehee
    • Korean Management Science Review
    • /
    • v.32 no.4
    • /
    • pp.19-28
    • /
    • 2015
  • This study presents a mathematical programming model to develop production planning in the manufacturing processes for photovoltaic silicon ingots and wafers. The model is formulated as a linear programming model that maximizes total growth margin, which is composed of production cost, inventory cost, shortage cost, and sales profit while considering the constraints associated with the production environments of photovoltaic materials. In order to demonstrate the utility of the model for production planning, we run operations for a planning horizon of a year for a case study. When the primary results of this mathematical programming are compared with the historical records, the model could have resulted in the considerable increase of the total growth margin by effectively reducing inventory cost if a decision maker had employed the model as a decision support system with perfect information for sales demand.

Joint Scheduling and Flow Control for Multi-hop Cognitive Radio Network with Spectrum Underlay

  • Quang, Nguyen Tran;Dang, Duc Ngoc Minh;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.297-299
    • /
    • 2012
  • In this paper, we introduce a joint flow control and scheduling algorithm for multi-hop cognitive radio networks with spectrum underlay. Our proposed algorithm maximizes the total utility of secondary users while stabilizing the cognitive radio network and still satisfies the total interference from secondary users to primary network is less than an accepted level. Based on Lyapunov optimization technique, we show that our scheme is arbitrarily close to the optimal.

Load shedding case study of the refinery plant power system considering dynamic characteristic (정유공장 전력계통 동특성을 고려한 부하차단 적용 사례연구)

  • Lee, Kang-Wan;Lim, Joo-Il;Kim, Hyung-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.61-65
    • /
    • 2000
  • This paper presents the load shedding case studies and recommendations of load shedding scheme For improving the reliability to suit the requirements of LG-Caltex refinery plant power sγstem. It is recommended for LG-Caltex to decrease the total generation for the economic dispatch. When the LG-Caltex refinery is isolated from KEPCO utility system, the proper load shedding scheme should be implemented since total generation in LG-Caltex refinery plant is less than the load demand. According to the studies carried out the logic-based load shedding is recommended as the main protection scheme, with the combination of the under-frequency relay load shedding.

  • PDF

Stabilization of Fuel F1ow in a Multi-Nozzle Combustion System Burning Natural Gas (천연가스 다노즐 열원설비의 연료 유동 안정화)

  • 박의철;차동진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1255-1265
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient flow in a utility gas turbine burning natural gas. The solution domain encompasses the supply gas pressure regulator to the combustor of the gas turbine that employs multi-nozzle fuel injectors. Some results produced for verification in the present study agree suite well with the experimental ones. It is found that the total gas flow may decrease noticeably during its combustion mode change, which would be the reason of momentary combustion upset, when a reference case of opening ratios of control valves in the system is applied. Several parameters are then varied in order to make the total gas flow stable over that period of time. Results of this study may be useful to understand the unsteady behavior of combustion system burning natural gas.

  • PDF

Development of an Integrated High Fidelity Helicopter and Engine Simulation for Control System Design (헬리콥터용 가스터빈 엔진의 제어기 설계를 위한 고충실도 통합 시뮬레이션 개발)

  • Choi, Kee-Young;Jang, Se-Ah;Choi, Ki-Young;Eom, Joo-Sang;Lee, Beom-Suk;Son, Young-Chang;Ryu, Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.249-257
    • /
    • 2010
  • Full authority digital engine control systems for gas turbine engines are replacing conventional mechanical control units rapidly. However, setting up design processes of controllers for high performance helicopter engines are not well known because of the complexity of the total system. This paper presents a high fidelity helicopter and engine simulation for control system design and analysis. Using this environment, a feedforward schedule was set up for a utility helicopter. The total engine simulation with the new controller showed better or equal performance compared to the total engine simulation with the pre-existing controller.

Survey and Economic Analysis of Food Industry Residues for Biomass-to-energy Conversion in Merced and Stanislaus Counties, California, USA (바이오에너지로의 전환을 위한 캘리포니아 식품가공공장 오.폐수 특성 조사 및 경제성 분석)

  • Kim, Dae-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.243-253
    • /
    • 2009
  • This research expands investigations into the biomass resource potential associated with California's food processing industry by surveying industries within a two county region in the San Joaquin Valley, California, USA. A previous survey conducted in 2005 for the Sacramento Municipal Utility District (SMUD) quantified residue and waste generation from food processors and food preparation businesses in the Sacramento region. The present survey investigates residue and waste streams from food processors located in Merced and Stanislaus Counties. Sixty food processors were identified to participate in the survey, of which 49 responded (82%) and data were acquired for 38 (63%) (6 facilities closed or moved, 8 decided not to participate). Within the two counties, total annual waste among survey respondents amounted to 24,044 dry tons of high moisture (${\geq}$60%) food residuals, 5,358 dry tons of low moisture (<60%) food residuals; and 23.7 million $m^3$ of wastewater containing 38,814 tons of biochemical oxygen demand ($BOD_5$). The total potential electric power generation from these food residues was estimated at approximately $7\;MW_e$. Total solid waste resource included in the survey response was estimated at about 10% of statewide residue generation for processors falling within the Standard Industrial Classification (SIC) System Major Group 20 (Food and Kindred Products) categories.