• Title/Summary/Keyword: Total System Error

Search Result 544, Processing Time 0.033 seconds

A Basic Study to Predict Solar Insolation using Meteorological Observation Data in Korea (국내 기상 측정결과를 이용한 일사량 예측 방법 기초 연구)

  • Hwangbo, Seong;Kim, Hayang;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • To well design the solar energy system using solar energy, the correlation to calculate solar irradiation is basically needed. So, this study was performed to reveal the relationships between the solar irradiation and four meteorological observation data(dry bulb temperature, relative humidity, sunshine duration, and cloud cover) which are different from previous other researches. And then, we finally proposed the first order non-linear correlation from the measured solar irradiation using four meteorological observation data with MINITAB. To show the deviation of the solar irradiation between measured and calculated, this study compared using the daily total solar irradiance and the maximum peak value. From those results, the calculation error was estimated about maximum 25.4% for the daily total solar irradiance. The error of the solar irradiation between measured and calculated was made from the curve fitting error. So, solar irradiation prediction correlation with higher accuracy can be obtained using 2nd or higher order terms with four meteorological observation data.

In-Flight Alignment of SDINS without Initial Heading Information (초기 기수각 정보가 필요 없는 SDINS의 운항중 정렬)

  • 홍현수;이장규;박찬국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.524-532
    • /
    • 2002
  • This paper presents a new in-flight alignment method for an SDINS under large initial heading error. To handle large heading error, a new attitude error model is introduced. The attitude errors are divided into heading error and leveling errors using a newly defined horizontal frame. Some navigation error dynamic models are derived from the attitude error model for indirect feedback filtering of the in-flight alignment system. A Kalman filter with Position measurement is designed to estimate navigation errors as the indirect feedback filter Simulation results show that the proposed in-flight alignment method reduces the heading error very quickly from more than 40deg to about 5deg so as to apply a refined navigation filter. The total alignment process including leveling mode and navigation mode in addition to the proposed one allows large initial values not only in heading error but also in leveling errors.

The estimation of first order derivative phase error using iterative algorithm in SAR imaging system (SAR(Synthetic Aperture Radar)Imaging 시스템에서 제안 알고리즘의 반복수행을 통한 위상오차의 기울기 추정기법 연구)

  • 김형주;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.505-508
    • /
    • 2000
  • The success of target reconstruction in SAR(Synthetic Aperture Radar) imaging system is greatly dependent on the coherent detection. Primary causes of incoherent detection are uncompensated target or sensor motion, random turbulence in propagation media, wrong path in radar platform, and etc. And these appear as multiplicative phase error to the echoed signal, which consequently, causes fatal degradations such as fading or dislocation of target image. In this paper, we present iterative phase error estimation scheme which uses echoed data in all temporal frequencies. We started with analyzing wave equation for one point target and extend to overall echoed data from the target scene - The two wave equations governing the SAR signal at two temporal frequencies of the radar signal are combined to derive a method to reconstruct the complex phase error function. Eventually, this operation attains phase error correction algorithm from the total received SAR signal. We verify the success of the proposed algorithm by applying it to the simulated spotlight-mode SAR data.

  • PDF

Analysis of human errors involved in Korean nuclear power plant trips (국내 원자력발전소 인적오류사례의 추이 분석)

  • 이정운;이용희;박근옥
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.27-38
    • /
    • 1996
  • A total of 77 unanticipated trip cases induced by human errors in Korean nuclear power plants were collected from the nuclear power plant trip event reports and analyzed to investigate the areas of high priority for human error reduction. Prior to this analysis, a classification system was made on the four task-related categories including plant systems, work situations, task types, and error types. The erroneous actions affecting the unanticipated plant trips were indentified by reviewing carefully the description of trip events. Then, the events with erroneous action were analyzed by using the classification system. Based on the results for the individual cases, human error occurrences were counted for each of the four categories, also for the selected pairs of categories, to find out the relationships between the two categories in aspects of human errors. As a result, the plant systems, work situations, and task types, and error types which are dominant in human error occurrences were identified.

  • PDF

Studies on the Improvement and Analysis of Data Entry Error to the AIS System for the Traffic Ships in the Korean Coastal Area (우리나라 연안해역을 통항하는 선박에 대한 AIS 데이터 입력 오류의 분석 및 개선 방안 연구)

  • JEON, Jae-Ho;JEONG, Tae-Gweon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1812-1821
    • /
    • 2016
  • The purpose of this study is to survey input data error of ship automatic identification system (AIS) and suggest its improvement. The effects of AIS were observed. Input data error of AIS was investigated by dividing it into dynamic data, static data by targeting actual ships and its improvement method was suggested. The findings are as follows. Looking into accidents before and after AIS is enforced to install on the ship, total collision were decreased after AIS installed. Static data error of AIS took place mainly in the case that ship name, call sign, MMSI, IMO number, ship type, location of antenna (ship length and width) were wrongly input or those data were not input initially. Dynamic data error of AIS was represented by input error of ship's heading. As errors of voyage related data take place as well, confusion is made in sailing or ship condition. Counter measures against the above are as follows. First, reliability of AIS data information should be improved. Second, incessant concern and management should be made on the navigation officers.

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM

  • Lee, Geunseop
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.613-626
    • /
    • 2017
  • For the overdetermined linear system, when both the data matrix and the observed data are contaminated by noise, Total Least Squares method is an appropriate approach. Since an ill-conditioned data matrix with noise causes a large perturbation in the solution, some kind of regularization technique is required to filter out such noise. In this paper, we consider a Dual regularized Total Least Squares problem. Unlike the Tikhonov regularization which constrains the size of the solution, a Dual regularized Total Least Squares problem considers two constraints; one constrains the size of the error in the data matrix, the other constrains the size of the error in the observed data. Our method derives two nonlinear equations to construct the iterative method. However, since the Jacobian matrix of two nonlinear equations is not guaranteed to be nonsingular, we adopt a trust-region based iteration method to obtain the solution.

Generation of Klobuchar Ionospheric Error Model Coefficients Using Fourier Series and Accuracy Analysis

  • Lee, Chang-Moon;Park, Kwan-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • Ionospheric error modeling is necessary to create reliable global navigation satellite system (GNSS) signals using a GNSS simulator. In this paper we developed algorithms to generate Klobuchar coefficients ${\alpha}_n$, ${\beta}_n$ (n = 1, 2, 3, 4) for a GNSS simulator and verified accuracy of the algorithm. The eight Klobuchar coefficients were extracted from three years of global positioning system broadcast (BRDC) messages provided by International GNSS service from 2006 through 2008 and were fitted with Fourier series. The generated coefficients from our developed algorithms are referred to as Fourier Klobuchar model (FOKM) coefficients, while those coefficients from BRDC massages are named as BRDC coefficients. The correlation coefficient values between FOKM and BRDC were higher than 0.97. We estimated total electron content using the Klobuchar model with FOKM coefficients and compared the result with that from the BRDC model. As a result, the maximum root mean square was 1.6 total electron content unit.

Control for a Yaw Error Compensation System of Linear Motor Stage (리니어모터 스테이지 편요오차 보상장치 제어)

  • Lee, Seung-Hyun;Kang, Min-Sig
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.997-1005
    • /
    • 2008
  • Linear motor stage is a useful device in precision engineering field because of its simple power transmission mechanism and accurate positioning. Even though linear motor stage shows fine positioning accuracy along travel axis, geometric dependent errors which relay on machining and assembling accuracy should be addressed to increase total positioning performances. In this paper, we suggests a cost effective yaw error compensation servo-system which is mounted on platform of the stage and nullify travel position dependent yaw error. This paper also provides a method of designing a sliding mode control which is robust to existing friction disturbance and model uncertainties. The reachability condition of slinding mode control for the yaw error compensating servo-system has been established. From some experimental results by using an experimental set-up, the sliding mode control showed its effective in disturbance rejection and its performance was superior to conventional linear controls.

Error Control Scheme for High-Speed DVD Systems

  • Lee, Joon-Yun;Lee, Jae-Jin;Park, Tae-Geun
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.103-110
    • /
    • 2005
  • We present a powerful error control decoder which can be used in all of the commercial DVD systems. The decoder exploits the error information from the modulation decoder in order to increase the error correcting capability. We can identify that the modulation decoder in DVD system can detect errors more than $60\%$ of total errors when burst errors are occurred. In results, fur a decoded block, error correcting capability of the proposed scheme is improved up to $25\%$ more than that of the original error control decoder. In addition, the more the burst error length is increased, the better the decoder performance. Also, a pipeline-balanced RSPC decoder with a low hardware complexity is designed to maximize the throughput. The maximum throughput of the RSPC decoder is 740Mbps@100MHz and the number of gate counts is 20.3K for RS (182, 172, 11) decoder and 30.7K for RS (208, 192, 17) decoder, respectively

  • PDF

Development of Korean VTEC Polynomial Model Using GIM

  • Park, Jae-Young;Kim, Yeong-Guk;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.297-304
    • /
    • 2022
  • The models used for ionosphere error correction in positioning using Global Navigation Satellite System (GNSS) are representatively Klobuchar model and NeQuick model. Although these models can correct the ionosphere error in real time, the disadvantage is that the accuracy is only 50-60%. In this study, a method for polynomial modeling of Global Ionosphere Map (GIM) which provides Vertical Total Electron Content (VTEC) in grid type was studied. In consideration of Ionosphere Pierce Points (IPP) of satellites with a receivable elevation angle of 15 degrees or higher on the Korean Peninsula, the target area for model generation and provision was selected, and the VTEC at 88 GIM grid points was modeled as a polynomial. The developed VTEC polynomial model shows a data reduction rate of 72.7% compared to GIM regardless of the number of visible satellites, and a data reduction rate of more than 90% compared to the Slant Total Electron Content (STEC) polynomial model when there are more than 10 visible satellites. This VTEC polynomial model has a maximum absolute error of 2.4 Total Electron Content Unit (TECU) and a maximum relative error of 9.9% with the actual GIM. Therefore, it is expected that the amount of data can be drastically reduced by providing the predicted GIM or real-time grid type VTEC model as the parameters of the polynomial model.