• Title/Summary/Keyword: Total Monitoring Platform

Search Result 26, Processing Time 0.023 seconds

Study about Real-time Total Monitoring Technique for Various Kinds of Multi Weather Radar Data (이기종-다중 기상레이더 자료의 실시간 통합 모니터링 기법 연구)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lim, Sanghun;Lee, Dong-Ryul;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.689-705
    • /
    • 2016
  • This paper proposed an realtime total monitoring platform for various kind of multi weather radars to analyze and predict weather phenomenons and prevent meteorological disasters. Our platform is designed to process each weather radar data on each radar site to minimize overloads from conversion and transmission of large volumed radar data, and to set observers up the definitive radar data via public framework server separately. By proposed method, weather radar data having different spatial or temporal resolutions can be automatically synchronized with there own spatio-temporal domains on public GIS platform having only one spatio-temporal criterion. Simulation result shows that our method facilitates the realtime weather monitoring from weather radars having various spatio-temporal resolutions without other data synchronization or assimilation processes. Moreover, since this platform doesn't require some additional computer equipments or high-technical mechanisms it has economic efficiency for it's systemic constructions.

Implementation of an Integrated Monitoring System for Constructional Structures Based on SaaS in Traditional Towns with Local Heritage (SaaS(Software as a Service) 기반 지방유적도시 구조물 유지관리계측 통합모니터링시스템 구현)

  • Min, Byung-Won;Oh, Yong-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.15-16
    • /
    • 2015
  • Measuring sensor, equipment, ICT facilities and their software have relatively short life time comparing to constructional structure so that we should exchange or fix them continuously in the process of maintenance and management. In this paper, we propose a novel design of integrated maintenance, management, and measuring monitoring system applying the concept of mobile cloud. For the sake of disaster prevention for constructional structures such as bridge, tunnel, and other traditional buildings in the village of local heritage, we analyze status of these structures in the long term or short term period as well as disaster situations. Collecting data based on mobile cloud and analyzing future expectations based on probabilistic and statistical techniques, we implement our integrated monitoring system for constructional structures to solve these existing problems. Final results of this design and implementation are basically applied to the monitoring system for more than 10,000 structures spread over national land in Korea. In addition, we can specifically apply the monitoring system presented here to a bridge of timber structure in Asan Oeam Village and a traditional house in Andong Hahoe Village to watch them from possible disasters. Total procedure of system design and implementation as well as development of the platform LinkSaaS and application services of monitoring functions implemented on the platform. We prove a good performance of our system by fulfilling TTA authentication test, web accommodation test, and operation test using real measuring data.

  • PDF

THE PERFOMANCE OF GROUNDBASE MOBILE PLATFORM FOR C-BAND MICROWAVE SCATTEROMETER SYSTEM

  • Aziz H.;Mahmood N.N.;Ali A.;Jamil H.;Mahmood K.A.;Ahmad Z.;Ibrahim N.;Brevern P.V.;Chuah H.T.;Koo V.C.;Sing L.X.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.61-63
    • /
    • 2004
  • The procurement of a mobile microwave scatterometer platform involved the consideration to ensure a mobile platform and equipment selected full-filled technical requirement and safety standard in Malaysia. Designing, and modification works involved engineering methodology in determining and selecting a suitable hydraulic telescopic boom that suit a selected mobile platform available locally. The mobile platform is a delivery system for microwave remote sensing microwave scatterometer and other accessories to any locations in Malaysia. Total loading to be carried by the mobile platform is 4500 kg and its overall weight must be 16,000 kg as recommended by hydraulic telescopic boom manufacturers. The telescopic boom will elevate microwave scatterometer system including the antenna to a maximum height of 27 m, and can also be rotated through $3600^{\circ}$. A mechanism is incorporated in the system to enable tracking or monitoring angular movement of the hydraulic telescopic boom when positioned towards predetermined target.

  • PDF

Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: design and deployment

  • Liu, Hong-biao;Zhang, Qiang;Zhang, Bao-hua
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.163-173
    • /
    • 2017
  • Structural health monitoring (SHM) of civil infrastructure using fiber Bragg grating sensor networks (FBGSNs) has received significant public attention in recent years. However, there is currently little research on the health-monitoring technology of high-piled wharfs in coastal ports using the fiber Bragg grating (FBG) sensor technique. The benefits of FBG sensors are their small size, light weight, lack of conductivity, resistance corrosion, multiplexing ability and immunity to electromagnetic interference. Based on the properties of high-piled wharfs in coastal ports and servicing seawater environment and the benefits of FBG sensors, the SHM system for a high-piled wharf in the Tianjin Port of China is devised and deployed partly using the FBG sensor technique. In addition, the health-monitoring parameters are proposed. The system can monitor the structural mechanical properties and durability, which provides a state-of-the-art mean to monitor the health conditions of the wharf and display the monitored data with the BIM technique. In total, 289 FBG stain sensors, 87 FBG temperature sensors, 20 FBG obliquity sensors, 16 FBG pressure sensors, 8 FBG acceleration sensors and 4 anode ladders are installed in the components of the back platform and front platform. After the installation of some components in the wharf construction site, the good signal that each sensor measures demonstrates the suitability of the sensor setup methods, and it is proper for the full-scale, continuous, autonomous SHM deployment for the high-piled wharf in the costal port. The South 27# Wharf SHM system constitutes the largest deployment of FBG sensors for wharf structures in costal ports to date. This deployment demonstrates the strong potential of FBGSNs to monitor the health of large-scale coastal wharf structures. This study can provide a reference to the long-term health-monitoring system deployment for high-piled wharf structures in coastal ports.

A Study on Smart Fitness Models for Active Senior (액티브시니어를 위한 스마트 피트니스 모델에 관한 연구)

  • Seungae Kang
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • This study aims to analyze exercise cases and issues using smart devices and technologies, and to present the development direction of a smart exercise environment suitable for the wellness life of active seniors with high activity and economic power unlike the existing silver generation. In the fitness industry, the subscription economy that regularly receives or uses necessary exercise tools, services, and digital content is expanding, and business models based on hardware sales and content subscription continue to emerge. In order to have value competitiveness as a platform that provides active seniors with integrated exercise services for health care, not only fitness centers, but also home training exercise equipment, fitness-related applications, and smart wearable device markets should be organically connected to form an expanded total platform. In order to have value competitiveness as a platform that provides active seniors with integrated exercise services for health care, not only fitness centers, but also home training exercise equipment, fitness-related applications, and smart wearable device markets should be organically connected to form an expanded total platform. The linkage of the digital healthcare function, which provides real-time changes to exercise programs based on continuous monitoring and feed back through wearable devices before, after, and during exercise by receiving and selecting exercise programs suitable for individual health status, is the differentiating factor in the smart fitness model.

Design and implementation of a SHM system for a heritage timber building

  • Yang, Qingshan;Wang, Juan;Kim, Sunjoong;Chen, Huihui;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.561-576
    • /
    • 2022
  • Heritage timber structures represent the history and culture of a nation. These structures have been inherited from previous generations; however, they inevitably exhibit deterioration over time, potentially leading to structural deficiencies. Structural Health Monitoring (SHM) offers the potential to assess operational anomalies, deterioration, and damage through processing and analysis of data collected from transducers and sensors mounted on the structure. This paper reports on the design and implementation of a long-term SHM system on the Feiyun Wooden Pavilion in China, a three-story timber building built more than 500 years ago. The principles and features of the design and implementation of SHM systems for heritage timber buildings are systematically discussed. In total, 104 sensors of 6 different types are deployed on the structure to monitor the environmental effects and structural responses, including air temperature and humidity, wind speed and direction, structural temperatures, strain, inclination, and acceleration. In addition, integrated data acquisition and transmission subsystem using a newly developed software platform are implemented. Selected preliminary statistical and correlation analysis using one year of monitoring data are presented to demonstrate the condition assessment capability of the system based on the monitoring data.

Routing optimization algorithm for logistics virtual monitoring based on VNF dynamic deployment

  • Qiao, Qiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1708-1734
    • /
    • 2022
  • In the development of logistics system, the breakthrough of important technologies such as technology platform for logistics information management and control is the key content of the study. Based on Javascript and JQuery, the logistics system realizes real-time monitoring, collection of historical status data, statistical analysis and display, intelligent recommendation and other functions. In order to strengthen the cooperation of warehouse storage, enhance the utilization rate of resources, and achieve the purpose of real-time and visual supervision of transportation equipment and cargo tracking, this paper studies the VNF dynamic deployment and SFC routing problem in the network load change scenario based on the logistics system. The BIP model is used to model the VNF dynamic deployment and routing problem. The optimization objective is to minimize the total cost overhead generated by each SFCR. Furthermore, the application of the SFC mapping algorithm in the routing topology solving problem is proposed. Based on the concept of relative cost and the idea of topology transformation, the SFC-map algorithm can efficiently complete the dynamic deployment of VNF and the routing calculation of SFC by using multi-layer graph. In the simulation platform based on the logistics system, the proposed algorithm is compared with VNF-DRA algorithm and Provision Traffic algorithm in the network receiving rate, throughput, path end-to-end delay, deployment number, running time and utilization rate. According to the test results, it is verified that the test results of the optimization algorithm in this paper are obviously improved compared with the comparison method, and it has higher practical application and promotion value.

Development of an IoT Smart Sensor for Detecting Gaseous Materials (사물인터넷 기술을 이용한 가스상 물질 측정용 스마트센서 개발과 향후과제)

  • Kim, Wook;Kim, Yongkyo;You, Yunsun;Jung, Kihyo;Choi, Won-Jun;Lee, Wanhyung;Kang, Seong-Kyu;Ham, Seunghon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.78-88
    • /
    • 2022
  • Objectives: To develop the smart sensor to protect worker's health from chemical exposure by adopting ICT (Information and Communications Technology) technologies. Methods: To develope real-time chemical exposure monitoring system, IoT (Internet of Things) sensor technology and regulations were reviewed. We developed and produced smart sensor. A smart sensor is a system consisting of a sensor unit, a communication unit, and a platform. To verify the performance of smart sensors, each sensor has been certified by the Korea Laboratory Accreditation Scheme (KOLAS). Results: Chemicals (TVOC; Total Volatile Organic Compounds, Cl2: Chlorine, HF: Hydrogen fluoride and HCN: Hydrogen cyanide) were selected according to a priority logic (KOSHA Alert, acute poisoning statistics, literature review). Notifications were set according to OEL (occupational exposure limit). Sensors were selected based on OEL and the capabilities of the sensors. Communication is designed to use LTE (Long Term Evolution) and Wi-Fi at the same time for convenience. Electronic platform were applied to build this monitoring system. Conclusions: Real-time monitoring system for OEL of hazardous chemicals in workplace was developed. Smart sensor can detect chemicals to complement monitoring of traditional workplace environmental monitoring such as short term and peak exposure. Further research is needed to expand the scope of application, improve reliability, and systematically application.

Formation Mechanism Analysis and Detection of Charged Particles in an Aero-engine Gas Path

  • Wen, Zhenhua;Hou, Junxing;Jiang, ZhiQiang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.247-253
    • /
    • 2015
  • The components of an aero-engine gas path cannot be monitored in a timely way due to a lack of real-time monitoring technologies. As an attempt to address this problem, we have conducted research on a condition monitoring technology based on the charging characteristics of particles in an aero-engine gas path, and emphatically analyze the formation of particles in an aero-engine gas path, the charging mechanism of carbon particles and the factors that influence the charge quantity and polarity. The verification experiments are performed on the simulated experiment platform and a turbo-shaft engine test bench. The results show the carbon particles' carry charge, and an obvious change in the total electrostatic charge level in the aero-engine gas path due to the increased carbon particles produced by burning or abnormal metal particles; the charge number is related to the size of particles, and the bigger carbon particles carry a negative charge and metal particles carry a positive charge; the change in engine power can lead to an obvious change in the level of electrostatic charge in the gas path, and the change in electrostatic charge results from the extra carbon particles formed in the rich-oil burning process. The research provides a reference for establishing the baseline of electrostatic charge while the engine runs on different power. The study also demonstrates the validity of the electrostatic monitoring technology and establishes a base for developing the application of electrostatic monitoring technology in aero-engines.

Distribution Characteristics between Line and Line for Indoor Air Pollutant Factors at Subway Stations in Seoul Area (서울지역 지하철역의 공기 중 오염인자의 노선별 분포 특성)

  • 김민영;라승훈;신도철;한규문;최금숙;정일현
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.134-144
    • /
    • 1998
  • A comprehensive air quality monitoring was carried out to investigate the criteria concentration of air pollutant in indoor of subway stations of Seoul City. The samples were collected twice per year (the first and the second half of the year) at each sampling point from February to September in 1997. Sampling point of subway stations was ticket office and platform. The measurement of indoor air pollutants such as sulfur dioxide(SO$_2$), nitrogen dioxide(NO$_2$), carbon monoxide(CO), carbon dioxide(CO$_2$), total suspended particulate(TSP) was performed to determine the indoor air quality. Heavy metals(Pb, Cd, Cu, Cr, As, Hg) were also measured together with those air pollutants. The annual average concentration of CO$_2$ and TSP in subway stations were relatively high while those of heavy metals were within 10% of environmental recommended standard concentration in all stations. As results of regression analysis between line and line of air factors, the concentrations of CO, CO$_2$, TSP, Pb, Cd, Cr and Cu were highly correlated, but those of $SO_2, NO_2$ and Hg were not correlated. As results of regression analysis between ticket office and platform, the concentrations of heavy metals such as Cr and Cu were highly correlated. Results of oneway analysis of variance between the first and the second half of the year air factors also indicated that CO, CO$_2$, Cd, Cu, Hg were significant($\alpha$=0.01), respectively. The average contration of total suspended particulate(TSP) in subway line No. 1 was shown high concentration(200 $\mu g/m^3\cdot$ day) level.

  • PDF