• Title/Summary/Keyword: Total Mixed Ration Silage

Search Result 38, Processing Time 0.025 seconds

Fermentation Characteristics and Lactic Acid Bacteria Succession of Total Mixed Ration Silages Formulated with Peach Pomace

  • Hu, Xiaodong;Hao, Wei;Wang, Huili;Ning, Tingting;Zheng, Mingli;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.502-510
    • /
    • 2015
  • The objective of this study was to assess the use of peach pomace in total mixed ration (TMR) silages and clarify the differences in aerobic stability between TMR and TMR silages caused by lactic acid bacteria (LAB). The TMR were prepared using peach pomace, alfalfa hay or Leymus chinensis hay, maize meal, soybean meal, cotton meal, limestone, a vitamin-mineral supplement, and salt in a ratio of 6.0:34.0:44.4:7.0:5.0:2.5:1.0:0.1 on a dry matter (DM) basis. Fermentation quality, microbial composition, and the predominant LAB were examined during ensiling and aerobic deterioration. The results indicated that the TMR silages with peach pomace were well fermented, with low pH and high lactic acid concentrations. The aerobic stability of TMR silages were significantly higher than that of TMR. Compared with TMR silages with alfalfa hay, TMR silage with Leymus chinensis hay was much more prone to deterioration. Although the dominant LAB were not identical in TMR, the same dominant species, Lactobacillus buchneri and Pediococcus acidilactici, were found in both types of TMR silages after 56 d of ensiling, and they may play an important role in the aerobic stability of TMR silages.

Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-plant Corn in Tibet

  • Chen, Lei;Guo, Gang;Yuan, Xianjun;Shimojo, Masataka;Yu, Chengqun;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.349-356
    • /
    • 2014
  • The objective of this study was to evaluate the effects of molasses and propionic acid on the fermentation quality and aerobic stability of total mixed ration (TMR) silages prepared with whole-plant corn in Tibet. TMR (354 g/kg DM) was ensiled with four different treatments: no additive (control), molasses (M), propionic acid (P), and molasses+propionic acid (PM), in laboratory silos (250 mL) and fermented for 45 d. Silos were opened and silages were subjected to an aerobic stability test for 12 days, in which chemical and microbiological parameters of TMR silages were measured to determined the aerobic deterioration. After 45 d of ensiling, the four TMR silages were of good quality with low pH value and ammonia/total N (AN), and high lactic acid (LA) content and V-scores. M silage showed the highest (p<0.05) LA content and higher dry matter (DM) recovery than the control and P silages. P silage had lower (p<0.05) LA content than the control silage. During aerobic exposure, lactic acid contents decreased gradually in the control and M silages, while that of P and PM silages increased, and the peak values were observed after 9 d. M silage had similar yeast counts with the control silage (> $10^5$ cfu/g FM), however, it appeared to be more stable as indicated by a delayed pH value increase. P and PM silages showed fewer yeasts (< $10^5$ cfu/g FM) (p<0.05) and were more stable than the control and M silages during aerobic exposure. It was concluded that M application increased LA content and improved aerobic stability of TMR silage prepared with whole-plant corn in Tibet. P application inhibited lactic acid production during ensiling, and apparently preserved available sugars which stimulated large increases in lactic acid during aerobic exposure stage, which resulted in greater aerobic stability of TMR silage.

Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage

  • Subepang, Sayan;Suzuki, Tomoyuki;Phonbumrung, Thamrongsak;Sommart, Kritapon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.548-555
    • /
    • 2019
  • Objective: The main objective of this study was to evaluate the effect of different feeding levels of a total mixed ration silage-based diet on feed intake, total tract digestion, enteric methane emissions, and energy partitioning in two beef cattle genotypes. Methods: Six mature bulls (three Thai natives, and three Thai natives - Charolais crossbreeds) were assigned in a replicated $3{\times}3$ Latin square design, with cattle breed genotype in separate squares, three periods of 21 days, and three energy feeding above maintenance levels (1.1, 1.5, and 2.0 MEm, where MEm is metabolizable energy requirement for maintenance). Bulls were placed in a metabolic cage equipped with a ventilated head box respiration system to evaluate digestibility, record respiration gases, and determine energy balance. Results: Increasing the feeding level had no significant effect on digestibility but drastically reduced the enteric methane emission rate (p<0.05). Increasing the feeding level also significantly increased the energy retention and utilization efficiency (p<0.01). The Thai native cattle had greater enteric methane emission rate, digestibility, and energy utilization efficiency than the Charolais crossbred cattle (p<0.05). The daily metabolizable energy requirement for maintenance in Thai native cattle ($388kJ/kg\;BW^{0.75}$, where $BW^{0.75}$ is metabolic body weight) was 15% less than that in Charolais crossbred cattle ($444kJ/kg\;BW^{0.75}$). Conclusion: Our results suggested that the greater feeding level in zebu beef cattle fed above maintenance levels resulted in improved energy retention and utilization efficiency because of the reduction in enteric methane energy loss. The results also indicated higher efficiency of metabolisable energy utilization for growth and a lower energy requirement for maintenance in Bos indicus than in Bos taurus.

A Study on Total Mixed Ration Feeding System for Feeding Pigs (1) - Development of Monorail Traveling TMR Feeder for Grow-Finish Pigs -

  • Kim, Hyuck Joo;Yu, Byeong Kee;Hong, Jong Tae;Choi, Kyu Hong;Yu, Ji Su;Hong, Youngsin;Ha, Yu Shin
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.295-305
    • /
    • 2013
  • Purpose: Recent research showed that total mixed ration (TMR) feeding for pigs improved the productivity and reduced feed cost and manure odor. An automatic TMR feeding system was developed for this study because the conventional feeder cannot deliver the TMR containing roughage. Methods: Conventional feeding systems and physical properties of TMR were surveyed, and performance tests of the conventional feeder were conducted to develop a TMR feeder. Based on the TMR feeder was developed and installed, driving, measuring weight, radio frequency identification (RFID) reading, and discharging test for feeding were conducted to ensure the performance. Results: Moisture content, density, and angle of repose of the TMR 1 (mixture of 30% cut IRG silage and 70% concentrates) were 31.6%, 387 $kg/m^3$, and $51^{\circ}$, respectively. Moisture content, density, and angle of repose of the TMR 2 (mixture of 45% concentrates, 30% cut IRG silage and by-products, 10% bean curd refuse, 10% others, and 5% fermenter) were 22.2%, 544 $kg/m^3$, and $50^{\circ}$, respectively. The coefficient of variation (C.V.) of conventional concentrate feeding were 1.9~4.1%, and C.V. of TMR containing 1~3% cut IRG roughage feeding by conventional feeder were 9~42%. The conventional disc type feeder was not suitable for TMR feeding because the supply unit was clogged. The C.V. of TMR 1 was 0.6~7.9% when 0.5~10 kg of the TMR supplied, and it was suitable for feeding grow-finish pigs and sows. On the contrary, the C.V. with TMR 2 was 28% when 0.5 kg of the TMR supplied, and it was not suitable for feeding sows. Conclusions: The TMR feeder developed in this study was suitable for feeding grow-finish pigs because the feeder performed stably with over 5.0 kg feed. However, the feeder showed a lack of accuracy for feeding sows because the amount of each feed was more than 0.5 kg per a feeding. Therefore, the improvement of outlet structure for accurate feeding is needed for sow feeding.

Effects of Italian ryegrass silage-based total mixed ration on rumen fermentation, growth performance, blood metabolites, and bacterial communities of growing Hanwoo heifers

  • Min-Jung Ku;Michelle A. Miguel;Seon-Ho Kim;Chang-Dae Jeong;Sonny C. Ramos;A-Rang Son;Yong-Il Cho;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.951-970
    • /
    • 2023
  • This study utilized Italian ryegrass silage (IRGS) - based total mixed ration (TMR) as feedstuff and evaluated its effects on rumen fermentation, growth performance, blood parameters, and bacterial community in growing Hanwoo heifers. Twenty-seven Hanwoo heifers (body weight [BW], 225.11 ± 10.57 kg) were randomly allocated to three experimental diets. Heifers were fed 1 of 3 treatments as follows: TMR with oat, timothy, and alfalfa hay (CON), TMR with 19% of IRGS (L-IRGS), and TMR with 36% of IRGS (H-IRGS). Feeding high levels of IRGS (H-IRGS) and CON TMR to heifers resulted in a greater molar proportion of propionate in the rumen. The impact of different TMR diets on the BW, average daily gain, dry matter intake, and feed conversion ratio of Hanwoo heifers during the growing period did not differ (p > 0.05). Furthermore, the blood metabolites, total protein, albumin, aspartate aminotransferase, glucose, and total cholesterol of the heifers were not affected by the different TMR diets (p > 0.05). In terms of rumen bacterial community composition, 264 operational taxonomic units (OTUs) were observed across the three TMR diets with 240, 239, and 220 OTUs in CON, L-IRGS, and H-IRGS, respectively. IRGS-based diets increased the relative abundances of genera belonging to phylum Bacteroidetes but decreased the abundances of genus belonging to phylum Firmicutes compared with the control. Data showed that Bacteroidetes was the most dominant phylum, while Prevotella ruminicola was the dominant species across the three TMR groups. The relative abundance of Ruminococcus bromii in the rumen increased in heifers fed with high inclusion of IRGS in the TMR (H-IRGS TMR). The relative abundance of R. bromii in the rumen significantly increased when heifers were fed H-IRGS TMR while P. ruminicola increased in both L-IRGS and H-IRGS TMR groups. Results from the current study demonstrate that the inclusion of IRGS in the TMR is comparable with the TMR containing high-quality forage (CON). Thus, a high level of IRGS can be used as a replacement forage ingredient in TMR feeding and had a beneficial effect of possibly modulating the rumen bacterial community toward mainly propionate-producing microorganisms.

Supplementing Vitamin E to the Ration of Beef Cattle Increased the Utilization Efficiency of Dietary Nitrogen

  • Wei, Chen;Lin, Shixin;Wu, Jinlong;Zhao, Guangyong;Zhang, Tingting;Zheng, Wensi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.372-377
    • /
    • 2016
  • The objectives of the trial were to investigate the effects of supplementing vitamin E (VE) on nutrient digestion, nitrogen (N) retention and plasma parameters of beef cattle in feedlot. Four growing Simmental bulls, fed with a total mixed ration composed of corn silage and concentrate mixture as basal ration, were used as the experimental animals. Four levels of VE product, i.e. 0, 150, 300, 600 mg/head/d (equivalent to 0, 75, 150, 300 IU VE/head/d), were supplemented to the basal ration (VE content 38 IU/kg dry matter) in a $4{\times}4$ Latin square design as experimental treatments I, II, III and IV, respectively. Each experimental period lasted 15 days, of which the first 12 days were for pretreatment and the last 3 days for sampling. The results showed that supplementing VE did not affect the nutrient digestibility (p>0.05) whereas decreased the urinary N excretion (p<0.01), increased the N retention (p<0.05) and tended to increase the microbial N supply estimated based on the total urinary purine derivatives (p = 0.057). Supplementing VE increased the plasma concentrations of VE, glucose and triglycerol (TG) (p<0.05) and tended to increase the plasma concentration of total protein (p = 0.096) whereas did not affect the plasma antioxidant indices and other parameters (p>0.05). It was concluded that supplementing VE up to 300 IU/head/d did not affect the nutrient digestibility whereas supplementing VE at 150 or 300 IU/head/d increased the N retention and the plasma concentrations of VE and TG (p<0.05) of beef cattle.

Effects of Aspergillus oryzae Fermentation Extract on Performance of Lactating Cows in the Summer and Winter in Taiwan

  • Chiou, Peter Wen-Shyg;Chen, Chao-Ren;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.382-389
    • /
    • 2002
  • The aims of this study is to evaluate the effect of Aspergillus oryzae Fermentation Extract (AFE) on the performance of lactating cows in summer (May to July) and winter (December to February). The experiment was a completely randomized design (CRD) and dietary treatments were 1) basal diet without AFE, 2) basal plus 3 g/d AFE into the basal total mixed ration (TMR), 3) basal plus 45.4 mg AFE/kg the ensiling corn silage and 4) AFE inclusion in silage and TMR. Twenty-eight cows from each trial were selected and randomly allocated into the four treatment groups, confined in individual pens, and fed ad libitum for 8 weeks in both seasons of feeding trials. Results showed that AFE inclusion in corn silage significantly improved DM intake by 4.4% and milk yield by 3.1% (p<0.05) during summer. In the winter season, AFE inclusion in the diet significantly improved milk yield by 10%. Direct addition of AFE to the TMR even further significantly improved milk yield over the addition through corn silage by 7.4% in winter (p<0.05). An additive effect of AFE inclusion into TMR and through corn silage was also demonstrated in the winter-feeding. AFE inclusion however, did not improve DM intake during the winter trial. In the summer trial, inclusion of AFE showed an adverse effect on the percentage of milk fat, but did not impact on the milk fat yield. Adding AFE through corn silage showed a trend towards alleviating the negative effects of milk fat from direct AFE inclusion in TMR. The similar trend occurred in the winter trial. The inclusion of AFE through corn silage significantly lowered the milk protein content over direct AFE addition, but did not significantly impacted the milk protein yield in summer. AFE supplementation during the winter season significantly increased milk protein content. Adding AFE to the corn silage significantly increased milk protein content over direct AFE addition in winter although inclusion of AFE significantly decreased total milk solid content in the summer (p<0.005). During the winter season, inclusion of AFE required less DM to produce a unit of milk. Inclusion of AFE into corn silage required less DM, energy and protein to produce a unit of milk. But inclusion of AFE did not alleviate heat stress on the lactating cows.

Characteristics of proteolytic microorganisms and their effects on proteolysis in total mixed ration silages of soybean curd residue

  • Hao, Wei;Tian, Pengjiao;Zheng, Mingli;Wang, Huili;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.100-110
    • /
    • 2020
  • Objective: The objective of this study was to isolate proteolytic microorganisms and evaluate their effects on proteolysis in total mixed ration (TMR) silages of soybean curd residue. Methods: TMRs were formulated with soybean curd residue, alfalfa or Leymus chinensis hay, corn meal, soybean meal, a vitamin-mineral supplement, and salt in a ratio of 25.0: 40.0:30.0:4.0:0.5:0.5, respectively, on a basis of dry matter. The microbial proteinases during ensiling were characterized, the dominate strains associated with proteolysis were identified, and their enzymatic characterization were evaluated in alfalfa (A-TMR) and Leymus chinensis (L-TMR) TMR silages containing soybean curd residue. Results: Both A-TMR and L-TMR silages were well preserved, with low pH and high lactic acid concentrations. The aerobic bacteria and yeast counts in both TMR silages decreased to about 105 cfu/g fresh matter (FM) and below the detection limit, respectively. The lactic acid bacteria count increased to 109 cfu/g FM. The total microbial proteinases activities reached their maximums during the early ensiling stage and then reduced in both TMR silages with fermentation prolonged. Metalloproteinase was the main proteinase when the total proteinases activities reached their maximums, and when ensiling terminated, metallo and serine proteinases played equally important parts in proteolysis in both TMR silages. Strains in the genera Curtobacterium and Paenibacillus were identified as the most dominant proteolytic bacteria in A-TMR and L-TMR, respectively, and both their proteinases were mainly with metalloproteinase characteristics. In the latter ensiling phase, Enterococcus faecium strains became the major sources of proteolytic enzymes in both TMR silages. Their proteinases were mainly of metallo and serine proteinases classes in this experiment. Conclusion: Proteolytic aerobic bacteria were substituted by proteolytic lactic acid bacteria during ensiling, and the microbial serine and metallo proteinases in these strains played leading roles in proteolysis in TMR silages.

Changes in Milk Production and Metabolic Parameters by Feeding Lactating Cows Based on Different Ratios of Corn Silage: Alfalfa Hay with Addition of Extruded Soybeans

  • Yana, Rong;Zhang, Ruizhong;Zhang, Xian;Jiang, Chao;Han, Jian-Guo;Zhang, Ying-Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.800-809
    • /
    • 2011
  • The objective of this study was to investigate the effects of different ratios of corn silage (CS): alfalfa hay (AH), and extruded soybeans (ESB) on milk yield, milk composition, blood metabolites, and fatty acids in milk fat and plasma. Ninety multiparous Holstein cows were arranged in a randomized block design experiment which lasted 14 weeks. Treatments were arranged as a $3{\times}3$ factorial with 0%, 5% or 10% ESB (dry matter basis) and three forage treatments: I) 30% CS, 10% AH and 10% Leymus chinense hay (LC); ii) 20% corn silage, 20% alfalfa hay and 10% LC; iii) 10% CS, 30% AH and 10% LC. Cows were allowed to consume a total mixed ration ad libitum. There was no change of dry matter intake when cows were fed the experimental diets. As more AH was added to the diets, milk yield, milk protein content and yield, and trans9, cis11-conjugated linoleic acids (CLA) concentrations in milk fat and plasma increased. When ESB were supplemented to the diets, milk yield, and trans9, cis11-CLA concentration in milk fat and plasma increased. When 10% ESB was added to the diet containing 30% AH the trans9, cis11-CLA content (1.46 g/100 g of total fatty acids) in milk was the highest among all treatments. These results suggests that AH could replace part of a CS diet and be a good forage source of diet for dairy cows to improve milk yield and milk composition. Meanwhile, ESB could be included in the diet with high AH to improve production performance of dairy cows.

Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle

  • Tao, Hui;Si, Bingwen;Xu, Wencai;Tu, Yan;Diao, Qiyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.732-741
    • /
    • 2020
  • Objective: The study was conducted to investigate the effects of Broussonetia papyrifera L. (B. papyrifera) silage on growth performance, serum biochemical parameters, meat quality, and meat amino acids and fatty acids compositions in beef cattle. Methods: Sixty-four male Angus beef cattle were assigned to 4 groups with 4 pens in each group and 4 beef cattle in each pen, and fed with the total mixed ration supplemented with 0%, 5%, 10%, or 15% B. papyrifera silage for 100 days (control group, 5% group, 10% group and 15% group) separately. Results: Beef cattle had significantly higher final body weight (BW) in 15% group, higher average daily gain (ADG) and dry matter intake (DMI) in 5% group, 10% group and 15% group, and higher feed conversion ratio (FCR) in 10% group and 15% group. Significantly higher blood superoxide dismutase (SOD) concentration was noted in 15% group, higher blood total antioxidant capacity (TAC) in 10% group and 15% group, lower 8-hydroxydeoxyguanosine (8-OHdG) and malondialdehyde (MDA) in 15% group. Meat had lower pH in 15% group, higher Commission International DeI'Eclairage (CIE) L in 5% group, 10% group, and 15% group, and lower drip loss in 15% group. Greater concentration of meat polyunsaturated fatty acids (PUFA) was observed in 10% group and 15% group, and docosahexaenoic acid (DHA) in 15% group. Conclusion: Diet with 15% B. papyrifera silage could improve performance and increase final BW, ADG, DMI, and FCR, enhance the antioxidant functions by decreasing blood 8-OHdG and MDA and increasing blood SOD and TAC, improve the meat quality by lowing pH and drip loss and increasing CIE L, increase the meat PUFA and DHA concentration. Polyphenols and flavonoids might be the main components responsible for the antioxidant activity and anti-biohydrogenation in the B. papyrifera silage. And B. papyrifera silage could be used as a new feedstuff in beef cattle nutrition.