• Title/Summary/Keyword: Total Friction Loss

Search Result 55, Processing Time 0.033 seconds

The Effects of Additional Factors on the Engine Friction Characteristics (엔진 마찰 특성에 미치는 부수적 인자의 영향)

  • Cho, Myung-Rae;Kim, Joong-Soo;Oh, Dae-Yoon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2159-2164
    • /
    • 2002
  • This paper reports on the effects of additional factors on the engine friction characteristics. The total friction loss of engine is composed of pumping and mechanical friction loss. The pumping loss was calculated from the cylinder pressure, and the mechanical friction loss was measured by strip-down method under the motoring condition. The various parameters were tested. The engine friction loss was much affected by oil and coolant temperature. The low viscosity oil was very effective to reduce the friction loss, and friction modifier was very useful to reduce the friction loss at lower engine speed. The engine friction loss was varied with engine running time because of surface roughness decreasing and oil degradation. To prevent oil-churning effect, it was very important to maintain the proper oil level. The presented results will be very useful to understand friction characteristics of engine.

Influence of Flowing Velocity and Length of Delivery Hoses on Power Requirement of Agricultural pump. (각종 송출 호오스의 구경 및 길이가 농용양수로의 소요동력에 미치는 영향)

  • 김기대;김성래;이한만
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.46-52
    • /
    • 1979
  • The water delivery hose for agricultural pump is getting popular in rural areas in korea. Friction head loss, discharge, and power requirements were measured in various discharge for different material and diameter of hose to get basic data for economical use in agricultural pump. The results attained in this study were as follows ; 1. Friction head loss increased significantly as the velocity increased, and the difference of velocity between the different diameter of hose was bigger than that between materials, which was resulted in the increase of the friction head loss. 2. Friction head loss in the case of that the velocity with 2m/sec was constant was about 3.53 to 4.01 m/100m in the diameter 3" and about 2.30 to 3.10 m/100m in the diameter 4". Material A of diameter 3" showed the maximum value 8.4m/100m in Reynolds number $2.0\times10^5$, 4" got the minimum value 2.24m/100m, the difference between these values was bigger than 6m per 100 meters in the friction head loss. 3. Darcy-Weisbach formular with friction coefficient [f] calculated by Nikurades formular in the smooth pipe or with friction coefficient [f] calculated on the base of C value 125 in Hazen-Williams formular was available in friction head loss of the water discharger hose in rural areas. 4. Total head increased as friction head loss increased , meanwhile total discharge decreased, and 20 percents of energy was more saved in Material C 4″pipe than Material A 3″pipe in the view point from the discharge per unit power requirement, this phenomenon suggested that long distance pipe would be advantage in larger diameter pipe for save of energy. for save of energy.

  • PDF

Performance Prediction of Centrifugal Compressors (원심 압축기의 성능 예측)

  • 오형우;정명균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.136-148
    • /
    • 1997
  • The present study has been carried out to develop a computational procedure for the analysis of the off-design performance in centrifugal compressors with vaneless diffusers by integrating empirical loss models and analytical equations. Losses in centrifugal compressors stem from a number of sources and their exact calculation is not yet possible. This study investigates several modeling schemes and shows that a fairly good prediction can be achieved by a proper selection of the most important flow parameters resulting form a meanline one-dimensional analysis. The performance maps for compressors are calculated and compared with measured performance maps. The off-design performance characteristics in terms of the pressure ratio vs. mass flow produced have generally correct forms. However, no universal means have been found to predict accurately the onset of surge. The prediction method developed through this study can serve as a tool to ensure good matching between parts and it can assist the understanding of the operational characteristics of general purpose centrifugal compressors.

  • PDF

CFD analysis of the Disk Friction Loss on the Centrifugal Compressor Impeller (원심 압축기의 임펠러 원판 마찰 손실에 대한 CFD 해석)

  • Kim, Hyun-Yop;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.596-604
    • /
    • 2011
  • To improve the total efficiency of centrifugal compressor, it is necessary to reduce the disk friction loss, which is defined as the power loss. In this study, the disk friction loss due to the axial clearance and the surface roughness effect is analyzed and proposed the new empirical equation for the reduction of the disk friction loss. The rotating reference frame technique and the 2-equation k-${\omega}$ SST model using commercial CFD code FLUENT is used for the steady-state analysis of the centrifugal compressor impeller. According to CFD results, the disk friction loss of the impeller is more affected by the surface roughness than the change of the axial clearance. For the minimization of the disk friction loss on the centrifugal compressor impeller, the magnitude of the axial clearance should be designed to the same size compare with theoretical boundary layer thickness and the surface roughness should be minimized.

The Effects of Design Parameters on the Friction Characteristics in the Valve Train System

  • Kim, Ji-Young;Han, Dong-Chul;Cho, Myung-Rae
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.75-79
    • /
    • 2001
  • This paper is a report on the parametric study of the friction characteristics on the direct acting type OHC valve train system. The numerical simulation was performed by using the IV-TAP. Dynamic analysis by using the lumped mass method was previously performed to define the acting load. The friction characteristics were analyzed by using the partial asperity contact model. The effects of operating conditions and major design parameters on the total driving torque were investigated. From the analytical prediction, it is found that valve spring stillness, surface roughness, and base circle radius are the main factors to reduce the frictional loss on the valve train system.

  • PDF

Performance Evaluation of Thrust Slide-Bearing of Scroll Compressors under R-22 Environment (R-22 냉매 분위기하에서 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.590-595
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil are evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

An Experimental Study for the Effect of Friction Modifier Added in Fuel on the Engine Friction and Fuel Economy (연료 주입형 마찰 조정제가 엔진 마찰 및 연비에 미치는 영향에 대한 실험적 연구)

  • 조명래;강경필;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.133-137
    • /
    • 2002
  • This paper reports on the effect of fuel additive friction modifier on the engine friction and fuel consumption. The test of engine friction and fuel consumption is performed for the each oils and fuels. The TFA4724 friction modifier is added in test oil and fuel. The test results show that total engine friction is a decrease of 0.7-2.0% compared with base fuel, and fuel consumption is improved by 0.3%. The amount of friction reduction corresponds to that of boundary friction loss term in ring-pack friction losses. From the results, it is thought that the additive friction modifier in the fuel is effective to reduce the boundary friction in ring-pack.

A Study on Friction Loss of Engine using Microfluidics Approach (미세유동의 경계면 특성을 적용한 엔진 마찰 손실 연구)

  • Park, Cho Hee;Kim, Bo Hung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1035-1042
    • /
    • 2014
  • Reducing the friction of engine parts is an important issue in engine design. The loss of energy in the piston assembly due to mechanical friction ranges from 40 to 55%, and there is an increase in the total energy of about 5% if the friction of the piston can be removed. In order to reduce the friction loss at the level of each engine part, it is necessary to perform a comparative analysis with other engines to determine the important factors affecting the energy loss. Several studies have been performed to analyze the lubrication based on hydrodynamic modeling, since a piston lubrication system has dimensions in the nanoscale to microscale domain. Therefore, it is necessary to determine the correlations between the molecular and continuum systems. In this study, we investigated the friction changes due to the various interactions between molecules in the wall/fluid interface, where a microscopic movement of the oil film occurs along the cylinder liner of the engine.

Basic Study on the Regenerator of Stilting Engine (III) - Heat Transfer and Flow Friction Characteristic of the Regenerator with Combined Wire-mesh Matrix - (스털링 기관용 재생기에 관한 기초 연구 (III) - 복합메쉬 철망을 축열재로 한 재생기의 전열 및 유동손실 특성 -)

  • Lee S. M.;Kim T. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.195-201
    • /
    • 2005
  • The output of Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, several kinds of combined wire screen meshes were used. The results are summarized as follows; The packed meshes with high mesh no. in the side of heater part of regenerator showed effective than the packed meshes with low mesh no. in the side of cooler part of regenerator. The temperature difference and pressure drop of the regenerator were not made by the specific surface area of wire screen meshes but by the minimum free-flow area to the total frontal area. Among the No. 150 single screen meshes, 200-60 combined meshes, the 200-150-100 combined meshes showed the highest in effectiveness.

Evaluation of Head Loss within In-Line Mixer for Water Treatment using CFD Technique (CFD모사 기법을 이용한 관내 혼화장치내 수두손실 발생 특성 평가)

  • Hwang, Young-Jin;Lim, Sung-Eun;Kim, Seong-Su;Park, No-Suk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.107-112
    • /
    • 2009
  • This study was conducted for verification and systematization of estimation method about the headloss using CFD(Computational Fluid Dynamics). Head loss which happens between the inlet and outlet of in-line mixer can be a major factor for the design and construction. Also, this Case studies about the sensitivity related to the velocity in the piping system. As result, program's default calculation function was used to get each side's total pressure and the differential of each total pressure could be defined as head loss from in-line mixer. In the case of adopting pipe surface friction factor and geometry loss, Calculation residual can be much more reduced. It was found that residual of value between CFD method and field test ranged about 3 through 18 precent.