• Title/Summary/Keyword: Total Failure Modeling

Search Result 48, Processing Time 0.022 seconds

A Study on Modeling for Optimized Allocation of Fault Coverage (Fault Coverage 요구사항 최적할당을 위한 모델링에 관한 연구)

  • 황종규;정의진;이종우
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.330-335
    • /
    • 2000
  • Faults detection and containment requirements are typically allocated from a top-level specification as a percentage of total faults detection and containment, weighted by failure rate. This faults detection and containments are called as a fault coverage. The fault coverage requirements are typically allocated identically to all units in the system, without regard to complexity, cost of implementation or failure rate for each units. In this paper a simple methodology and mathematical model to support the allocation of system fault coverage rates to lower-level units by considering the inherent differences in reliability is presented. The models are formed as a form of constrained optimization. The objectives and constraints are modeled as a linear form and this problems are solved by linear programming. It is identified by simulation that the proposed solving methods for these problems are effective to such requirement allocating.

  • PDF

Numerical study on mechanical and failure properties of sandstone based on the power-law distribution of pre-crack length

  • Shi, Hao;Song, Lei;Zhang, Houquan;Xue, Keke;Yuan, Guotao;Wang, Zhenshuo;Wang, Guozhu
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.421-434
    • /
    • 2019
  • It is of great significance to study the mechanical properties and failure mechanism of the defected rock for geological engineering. The defected sandstone modeling with power-law distribution of pre-cracks was built in this paper by Particle Flow Code software. Then the mechanical properties of sandstone and the corresponding failure process were meticulously analyzed by changing the power-law index (PLI) and the number of pre-cracks (NPC). The results show that (1) With the increase of the PLI, the proportion of prefabricated long cracks gradually decreases. (2) When the NPC is the same, the uniaxial compressive strength (UCS) of sandstone increases with the PLI; while when the PLI is the same, the UCS decreases with the NPC. (3) The damage model of rock strength is established based on the Mori-Tanaka method, which can be used to better describe the strength evolution of damaged rock. (4) The failure mode of the specimen is closely related to the total length of the pre-crack. As the total length of the pre-crack increases, the failure intensity of the specimen gradually becomes weaker. In addition, for the specimens with the total pre-crack length between 0.2-0.55 m, significant lateral expansion occurred during their failure process. (5) For the specimens with smaller PLI in the pre-peak loading process, the concentration of the force field inside is more serious than that of the specimens with larger PLI.

New energy partitioning method in essential work of fracture (EWF) concept for 3-D printed pristine/recycled HDPE blends

  • Sukjoon Na;Ahmet Oruc;Claire Fulks;Travis Adams;Dal Hyung Kim;Sanghoon Lee;Sungmin Youn
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • This study explores a new energy partitioning approach to determine the fracture toughness of 3-D printed pristine/recycled high density polyethylene (HDPE) blends employing the essential work of fracture (EWF) concept. The traditional EWF approach conducts a uniaxial tensile test with double-edge notched tensile (DENT) specimens and measures the total energy defined by the area under a load-displacement curve until failure. The approach assumes that the entire total energy contributes to the fracture process only. This assumption is generally true for extruded polymers that fracture occurs in a material body. In contrast to the traditional extrusion manufacturing process, the current 3-D printing technique employs fused deposition modeling (FDM) that produces layer-by-layer structured specimens. This type of specimen tends to include separation energy even after the complete failure of specimens when the fracture test is conducted. The separation is not relevant to the fracture process, and the raw experimental data are likely to possess random variation or noise during fracture testing. Therefore, the current EWF approach may not be suitable for the fracture characterization of 3-D printed specimens. This paper proposed a new energy partitioning approach to exclude the irrelevant energy of the specimens caused by their intrinsic structural issues. The approach determined the energy partitioning location based on experimental data and observations. Results prove that the new approach provided more consistent results with a higher coefficient of correlation.

Proactive Maintenance Framework of Manufacturing Equipment through Performance-based Reliability

  • Kim, Yon-Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.53
    • /
    • pp.45-54
    • /
    • 1999
  • Manufacturing today is becoming increasingly competitive. If a company is to exist and successfully compete, it must pay very careful attention to production management, total quality assurance and total proactive maintenance issues. Overall machine performance, repair efficiency, system level utilization, productivity and quality of output need to be optimized as possible. To accomplish that objective, the behavior of manufacturing equipment and systems need to be monitored and measured continuously if it is possible. Then early warning of possible failure should be generated and proacted on that type of the situation to improve overall operation performance of manufacturing environment. In this paper, Proactive maintenance framework using performance-based reliability structure as enabler technology is proposed. Its paradigm enables one to maximize system through-put and product quality as well as resources in the performance domain. In the case of inadequate knowledge of the failure mechanics, this empirical modeling concept along with performance degradation knowledge can serve as an important product and process improvement tool. The real-time framework extension to proposed framework uses on-line performance information and is capable of projecting the remaining useful period.

  • PDF

Strength and stiffness modeling of extended endplate connections with circular and rectangular bolt configurations

  • Hantouche, Elie G.;Mouannes, Elie N.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.323-352
    • /
    • 2016
  • The results of a series of finite element (FE) simulations and experimental studies are used to develop strength and stiffness models that predict the failure capacity and response characteristics of unstiffened extended endplate connections with circular and rectangular bolt configurations associated with deep girders. The proposed stiffness models are composed of multi-linear springs which model the overall extended endplate/column flange system deformation and strength of key-components. Comparison of model predictions with FE and experimental results available in the literature show that the proposed models accurately predict the strength and the response of extended endplate/column system with circular and rectangular bolt configurations. The effect of the bolt configuration (circular and rectangular) on the prying phenomenon encountered in the unstiffened extended endplate/column system was investigated. Based on FE results, extended endplate with circular bolt configuration has a more ductile behavior and exhibits higher total prying forces. The proposed models can be used to design connections that cover all possible failure modes for extended endplate with circular bolt configuration. This study provides guidelines for engineers to account for the additional forces induced in the tension bolts and for the maximum rotational capacity demand in the connection which are required for seismic analysis and design.

Failure Rate Characteristics Analysis under Ground Mobile and Ground Fixed Environments (지상 기동 및 고정 환경하 고장률 특성 분석)

  • Yun, Hui-Sung;Jeong, Da-Un;Yoon, Jong-Sung;Lee, Seung-Hun
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.293-303
    • /
    • 2011
  • Reliability Prediction using MIL-HDBK-217F has some restrictions due to its one modeling basis. One of the restrictions is caused by selecting one operating environment of a system, which is chosen regardless of its detailed conditions, e.g., external impact and vibration. Especially, an equipment, which is installed on a mobile vehicle though its movement is quasi-static, is controversial to designate its environment as ground mobile($G_M$), rather than ground fixed($G_F$). In this paper, failure rates were compared, which are computed using several moving time rates to total operating time. RiAC-HDBK-217Plus was used as the basic calculation model. In addition, $G_F$ conditioned failure rate was evaluated by comparing with that under $G_M$ environment but fixed state.

The Influence of Service Recovery Justice on Intention to Recommend for Retailer

  • SHIN, Yongsun;KIM, Moonseop
    • Journal of Distribution Science
    • /
    • v.18 no.2
    • /
    • pp.91-98
    • /
    • 2020
  • Purpose: This research aimed to suggest retailing companies some ways to enhance customer satisfaction with service recovery and recommendation intention towards these companies. For this purpose, current study examined the relationships among service recovery justice, service failure severity, customer trust, recovery satisfaction and intention to recommend and the moderating role of ego-resilience. Research design, data and methodology: Current study developed a structural equation model in which perceived service recovery justice is a predictor, service failure severity, customer trust, recovery satisfaction are mediators, intention to recommend is a dependent variable and the ego-resilience is a moderator between the perceived service recovery justice and the customer trust and the recovery satisfaction. Data were collected from customers who experienced service failures from retailers. A total of 400 questionnaires were collected and 365 samples were used for analysis after deleting data having missing value. SPSS 25.0 and AMOS 24.0 were used to test the validity, reliability, and structural equation modeling. Results: Empirical results showed that the perceived service recovery justice had a negative influence on the perceived service failure severity and a positive influence on the customer trust and the recovery satisfaction. These results indicate that when customers perceive the service recovery justice more highly, they perceive the service failure less severe but they perceive the retailer more trustworthy and are satisfied with service recovery. In addition, the customer trust and the recovery satisfaction had a positive influence on the intention to recommend. These results indicate that when customers perceive the retailer more trustworthy and are satisfied with service recovery, they are more intend to recommend the retailer. Moreover, the influence of the perceived service recovery justice on the customer trust and the recovery satisfaction was moderated by the ego-resilience. Conclusions: This study contributed to the service recovery literature by proving the relationship among service recovery justice, service failure severity, customer trust, recovery satisfaction and intention to recommend. Moreover, current research introduced the ego-resilience into service recovery research area and revealed the moderation role of the ego-resilience. Managerially, this research suggested retailing companies some ways to effectively recover from service failure.

Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM

  • Qian, Jian-Gu;Gao, Qian;Xue, Jian-feng;Chen, Hong-Wei;Huang, Mao-Song
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.295-312
    • /
    • 2017
  • Cast in situ and grouted concrete helical piles with 150-200 mm diameter half cylindrical ribs have become an economical and effective choice in Shanghai, China for uplift piles in deep soft soils. Though this type of pile has been successful used in practice, the reinforcing mechanism and the contribution of the ribs to the total resistance is not clear, and there is no clear guideline for the design of such piles. To study the inclusion of ribs to the contribution of shear resistance, the shear behaviour between silty sand and concrete slabs with parallel ribs at different spacing and angles were tested in a large direct shear box ($600mm{\times}400mm{\times}200mm$). The front panels of the shear box are detachable to observe the soil deformation after the test. The tests were modelled with three-dimensional finite element method in ABAQUS. It was found that, passive zones can be developed ahead of the ribs to form undulated failure surfaces. The shear resistance and failure mode are affected by the ratio of rib spacing to rib diameter. Based on the shape and continuity of the failure zones at the interface, the failure modes at the interface can be classified as "punching", "local" or "general" shear failure respectively. With the inclusion of the ribs, the pull out resistance can increase up to 17%. The optimum rib spacing to rib diameter ratio was found to be around 7 based on the observed experimental results and the numerical modelling.

Eliminating concrete cover separation of NSM strengthened beams by CFRP end anchorage

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Kamruzzaman, Mohamed;Huda, Md. Nazmul;Soeb, Mahmudur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.899-916
    • /
    • 2015
  • Upgrading or strengthening of existing reinforced concrete (RC) infrastructure is an emerging demand nowadays. Near Surface Mounted (NSM) technique is very promising approach for flexural strengthening of RC members. However, premature failure such as concrete cover separation failure have been a main concern in utilizing this technique. In this study, U-wrap end anchorage with carbon fiber reinforced polymer (CFRP) fabrics is proposed to eliminate the concrete cover separation failure. Experimental programs were conducted to the consequence of U-wrap end anchorage on the flexurally strengthened RC beams with NSM-steel. A total of eight RC rectangular beam specimens were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM-steel bars and the remaining four specimens were strengthened with NSM-steel bars and U-wrap end anchorage using CFRP fabrics. A 3D non-linear finite element model (FEM) was developed to simulate the flexural response of the tested specimens. It is revealed that NSM-steel (with and without end-anchors) significantly improved the flexural strength; moreover decreased deflection and strains compared with reference specimen. Furthermore, NSM-steel with end anchorage strengthened specimens revealed the greater flexural strength and improve failure modes (premature to flexure) compared with the NSM-steel without end anchorage specimens. The results also ensured that the U-wrap end anchorage completely eliminate the concrete cover separation failure.

Renal function is associated with prognosis in stent-change therapy for malignant ureteral obstruction

  • Yoon, Ji Hyung;Park, Sejun;Park, Sungchan;Moon, Kyung Hyun;Cheon, Sang Hyeon;Kwon, Taekmin
    • Investigative and Clinical Urology
    • /
    • v.59 no.6
    • /
    • pp.376-382
    • /
    • 2018
  • Purpose: The authors performed this study to investigate the risk factors for predicting stent failure and to evaluate its impact on prognosis. Materials and Methods: Between January 2002 and March 2017, we retrospectively reviewed 117 consecutive patients who underwent retrograde ureteral stenting and exchanging at least once every 3 months for malignant ureteral obstruction. The patients were classified according to their pre-stenting chronic kidney disease (CKD) stage. The factors affecting stent failure were analyzed using a logistic regression model. Overall survival (OS) was estimated, and the prognostic significance of each variable was estimated using Cox proportional-hazards regression modeling. Results: Before stenting, 91 patients were CKD stages 1-3 and 26 patients were CKD stages 4-5. These two groups differed significantly only in pre-stenting estimated glomerular filtration rate (eGFR), bilateral obstruction, and pre-stenting pyuria. Among the 117 patients, stent failure occurred in 30 patients (25.6%), and there were no differences between the groups. Pre-stenting pyuria and post-stenting complications were significant predictors of stent failure. There were 79 deaths in total, including 56 in the CKD stages 1-3 group and 23 in the CKD stages 4-5 group. In the multivariate analysis predicting patient OS, pre-stenting eGFR and post-stenting disease progression were significant factors. Conclusions: Internal ureteral stenting was effective for maintaining renal function in malignant ureteral obstruction. However, it did not restore renal function, which is related to the prognosis of the patients. Therefore, to improve patients' renal function and prognosis, patients who require stenting must be quickly recognized and treated.