• Title/Summary/Keyword: Torsional Torque Vibration

Search Result 93, Processing Time 0.024 seconds

A study on an analysis of torsional vibration of a driveline of heavy duty truck (대형트럭 구동계의 저진동 설계 시스템의 개발연구)

  • Hwang, Won-Gul;Kim, Ki-Sei
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.132-140
    • /
    • 1996
  • This paper developes a torsional vibration model of heavy duty truck drive line for simulation of a driving rattle, which causes very annoying noise to driver at the full load driving condition. Test results show a peak in the fit plots at the frequency of the 2nd harmonics of propeller shaft revolution. A 10 d.o.f. lumped parameter nonlinear torsional vibration model is constructed and engine torque variation is calculated from P- .theta. diagram. Time responses are simulated and compared with the test results, which show fairly good agreement. The effects of paramenter change are investigated, and the optimum configuration is proposed.

  • PDF

A Study on Design of a Damper for Reducing Torsional Vibrations of a Driveline with Universal Joints (Universal Joint를 갖는 구동축 시스템의 비틀림 진동 감소를 위한 Damper의 적정설계에 관한 연구)

  • Park, Bo-Yong;Song, Chang-Seop;Kang Hyo-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.137-145
    • /
    • 1991
  • A universal joint is a connecting device of two hinges which can transmit torque from one shaft to another at fixed or at varying angles of intersection. It has been used properly not only as rotational but also as intermittent motion. For the particular kinematics condition of a universal joint, torsional and bending vibrations are produced excessively in an elastic driveline. In this paper only the torsional vibration behavior of a driveline with universal joints is analyzed numerically with the discrete model and a design method of the dynamic vibration damper is proposed, in order to reduce torsional vibrations especially in resonance region as a result of parametric variation.

  • PDF

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

Torsional Vibration Characteristics of Shaft Generating System Direct-coupled with Low-speed Two Stroke Diesel Engine (저속 2행정 디젤엔진과 직결된 축발전기의 비틀림 진동 특성)

  • Barro, Ronald D.;Kim, HongRyul;Truong, Hoang Nam;Lee, Donchool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • Fuel oil consumption cost varies depending on every ship operation and this roughly amounts to 70 % of shipping companies' total revenue. As such, efforts towards improved fuel economy are being pursued. An annual 1 % reduction in fuel consumption is perceived to result in saving tens million US dollars on the global fleet operation. One approach is the application of power take-off configurations which are seen to increase fuel oil economy and are suitable for power generation. In this study, the dynamic properties of a shaft generator coupled on a 10S90ME main engine of an 18 600 TEU container vessel is presented. The vibratory torque and angular velocity variation was examined through theoretical analysis and actual vibration measurement. The result of the study suggests a review on existing classification rules for generator design and the lowering of vibratory torque and angular velocity variation guideline.

Speed Control of Two-Mass System Using Neural Network Estimator (신경망 추정기를 이용한 2관성 공진계의 속도 제어)

  • Lee, Kyo-Beum;Song, Joong-Ho;Choi, Ick;Kim, Kwang-Bae;Lee, Kwang-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.286-293
    • /
    • 1999
  • A new control scheme using a torsional torque estimator based on a neural network is proposed and investigated for improving control characteristics of the high-performance motion control system. This control method presents better performance in the corresponding speed vibration response, compared with the disturbance observer-based control method. This result comes from the fact that the proposed neural network estimator keeps the self-learning capability, whereas the disturbance observer-based torque estimator with low pass filter should dbjust the time constant of the adopted filter according to the natural resonance frequency detemined by considering the system parameters varied. The simulation results shows the validity of the proposed control scheme.

  • PDF

New Vibration Suppression Control of 2-Mass System using $H_{\infty}$ Filter (2관성계의 $H_{\infty}$ 필터를 이용한 새로운 전동억제제어)

  • 김진수;유상봉
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.339-342
    • /
    • 2002
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem H$_{\infty}$ controller was designed. In this paper, H$_{\infty}$ control of 2-mass system using H$_{\infty}$ filter for compensating shaft torque is proposed. Pole-zero maps show the validity of proposed controller.

  • PDF

A Process Analysis for Manufacturing the Sleeve Spring of the Torsional Vibration Damper (비틀림 진동감쇠기용 슬리브 스프링의 제조 공정 해석)

  • Hwang, Beom-Cheol;Bae, Won-Byong;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.94-101
    • /
    • 2009
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, it is necessary to establish preventive measures to diminish the torsional vibration. The sleeve spring type damper is one of the preventive measures for reducing the torsional vibration. In this study, 2-roll bending process was proposed to manufacture sleeve spring; The program to calculate the initial radius including springback effect was developed and the FEA method to analyze elasto-plastic problem was verified through analysis of 90 degree bending process. The elasto-plastic analysis of 2-roll bending process was carried out by the FEA method verified to set a new criterion, and the new process design parameter(contact angle) in the 2-roll bending process was proposed.

Robust Speed Control Scheme for Torsional Vibration Suppression of Two Mass System (이관성계 전동기 구동시스템의 축진동억제를 위한 강인한 속도제어기법)

  • 박태식;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.80-88
    • /
    • 2003
  • In this paper, the new robust torsional vibration suppression control scheme is proposed for the two mass system. A reduced order state feedback controller where the motor speed and the observed torsional torque are fed back and the PI controller are proposed as the torsional vibration suppression controller. Using the estimated mechanical parameters by off-line RLS(Recursive Least Square) algorithms, the speed controller for torsional vibration suppression is designed and its gains are determined using the Kharitonov robust control theory. The Kharitonov robust control theory can obtain the robust stability with a specified stability margin and a damping limit and the good performance of vibration suppression although if the parameters are varied within some specified limit. The effectiveness and usefulness of the proposed schemes are verified with the simulation and the experimental results on the fully-digitalized 5.5kW two mass system.

Research for Stepping Motor Using Piezoelectric Torsional Actuator (압전회전작동기를 이용한 스텝모터에 관한 연구)

  • Kim Jun Hyuk;Kim Jaehwan;Chung Dal Do
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.499-505
    • /
    • 2005
  • In this paper, a new type of pi+ezoelectric stepping motor is designed, manufactured and tested. This motor is composed of piezoelectric torsional actuator and a pair of one-way clutch bearings. The torsional actuator consists of 16-polygonal tube of piezoceramic that can produce an angular displacement associated with shear mode. One-way clutch bearing converts oscillation of torsional actuator into a continuous stepping rotation. The proposed stepping motor does not require any conversion mechanism for stepping motion like any other motors. In the design process, the shear resonance mode of piezoelectric actuator is analyzed by using a commercial finite element analysis program, and the performance of the fabricated torsional actuator is measured. $0.124^{\circ}$ of maximum angular displacement is measured in square wave excitation on the actuator only. The stepping motor is manufactured by assembling a pair of one-way clutch bearings and the torsional actuator. The maximum rotation speed of 72rpm and the blocking torque of 3.136 mNm are measured at 3540 Hz and 100V/mm. Once the proposed piezoelectric stepping motor is miniaturized, it can be used for many compact and precise moving applications.

Reduction of the Prominent Peak of Tone Noise in Air Conditioning Units (공조기기에서 발생하는 장한 피크의 톤 소음 저감을 위한 연구)

  • Park, Jeong-Il;Kang, Jeong-Hoon;Joo, Jae-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.946-950
    • /
    • 2006
  • This paper proposed the ways for reduction of the prominent peak of the tone noise in air conditioning units. In order to find out the sources of the tone noise, the resonant frequencies and modes of the fans were investigated. Also, the effects of the ambient temperatures and material properties of the fans on the tone noise were studied. From the experiments, it was shown that the tone noise was greatly influenced by the torsional resonance of the fan and motor system and commutation frequency. In other words, the torsional resonance of the fan and motor system has not to be close to the commutation frequency (torque ripple frequency) which creates a rate of change in the angular acceleration in order to reduce the tone noise in air conditioning units.

  • PDF